Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by J. J Lee
Total Records ( 9 ) for J. J Lee
  X Wu , M. R Spitz , J. J Lee , S. M Lippman , Y Ye , H Yang , F. R Khuri , E Kim , J Gu , R Lotan and W. K. Hong
 

This study was aimed to identify novel susceptibility variants for second primary tumor (SPT) or recurrence in curatively treated early-stage head and neck squamous cell carcinoma (HNSCC) patients.

We constructed a custom chip containing a comprehensive panel of 9,645 chromosomal and mitochondrial single nucleotide polymorphisms (SNP) representing 998 cancer-related genes selected by a systematic prioritization schema. Using this chip, we genotyped 150 early-stage HNSCC patients with and 300 matched patients without SPT/recurrence from a prospectively conducted randomized trial and assessed the association of these SNPs with risk of SPT/recurrence.

Individually, six chromosomal SNPs and seven mitochondrial SNPs were significantly associated with risk of SPT/recurrence after adjustment for multiple comparisons. A strong gene-dosage effect was observed when these SNPs were combined, as evidenced by a progressively increasing SPT/recurrence risk as the number of unfavorable genotypes increased (P for trend < 1.00 x 10–20). Several polygenic analyses suggest an important role of interconnected functional network and gene-gene interaction in modulating SPT/recurrence. Furthermore, incorporation of these genetic markers into a multivariate model improved significantly the discriminatory ability over the models containing only clinical and epidemiologic variables.

This is the first large-scale systematic evaluation of germ-line genetic variants for their roles in HNSCC SPT/recurrence. The study identified several promising susceptibility loci and showed the cumulative effect of multiple risk loci in HNSCC SPT/recurrence. Furthermore, this study underscores the importance of incorporating germ-line genetic variation data with clinical and risk factor data in constructing prediction models for clinical outcomes.

  H Kadara , L Lacroix , C Behrens , L Solis , X Gu , J. J Lee , E Tahara , D Lotan , W. K Hong , I. I Wistuba and R. Lotan
 

Lung cancer continues to be a major deadly malignancy. The mortality of this disease could be reduced by improving the ability to predict cancer patients' survival. We hypothesized that genes differentially expressed among cells constituting an in vitro human lung carcinogenesis model consisting of normal, immortalized, transformed, and tumorigenic bronchial epithelial cells are relevant to the clinical outcome of non–small cell lung cancer (NSCLC). Multidimensional scaling, microarray, and functional pathways analyses of the transcriptomes of the above cells were done and combined with integrative genomics to incorporate the microarray data with published NSCLC data sets. Up-regulated (n = 301) and down-regulated genes (n = 358) displayed expression level variation across the in vitro model with progressive changes in cancer-related molecular functions. A subset of these genes (n = 584) separated lung adenocarcinoma clinical samples (n = 361) into two clusters with significant survival differences. Six genes, UBE2C, TPX2, MCM2, MCM6, FEN1, and SFN, selected by functional array analysis, were also effective in prognosis. The mRNA and protein levels of one these genes—UBE2C—were significantly up-regulated in NSCLC tissue relative to normal lung and increased progressively in lung lesions. Moreover, stage I NSCLC patients with positive UBE2C expression exhibited significantly poorer overall and progression-free survival than patients with negative expression. Our studies with this in vitro model have lead to the identification of a robust six-gene signature, which may be valuable for predicting the survival of lung adenocarcinoma patients. Moreover, one of those genes, UBE2C, seems to be a powerful biomarker for NSCLC survival prediction.

  A. S Tsao , D Liu , J Martin , X. m Tang , J. J Lee , A. K El Naggar , I Wistuba , K. S Culotta , L Mao , A Gillenwater , Y. M Sagesaka , W. K Hong and V. Papadimitrakopoulou
 

Epidemiologic and preclinical data support the oral cancer prevention potential of green tea extract (GTE). We randomly assigned patients with high-risk oral premalignant lesions (OPL) to receive GTE at 500, 750, or 1,000 mg/m2 or placebo thrice daily for 12 weeks, evaluating biomarkers in baseline and 12-week biopsies. The OPL clinical response rate was higher in all GTE arms (n = 28; 50%) versus placebo (n = 11; 18.2%; P = 0.09) but did not reach statistical significance. However, the two higher-dose GTE arms [58.8% (750 and 1,000 mg/m2), 36.4% (500 mg/m2), and 18.2% (placebo); P = 0.03] had higher responses, suggesting a dose-response effect. GTE treatment also improved histology (21.4% versus 9.1%; P = 0.65), although not statistically significant. GTE was well tolerated, although higher doses increased insomnia/nervousness but produced no grade 4 toxicity. Higher mean baseline stromal vascular endothelial growth factor (VEGF) correlated with a clinical (P = 0.04) but not histologic response. Baseline scores of other biomarkers (epithelial VEGF, p53, Ki-67, cyclin D1, and p16 promoter methylation) were not associated with a response or survival. Baseline p16 promoter methylation (n = 5) was associated with a shorter cancer-free survival. Stromal VEGF and cyclin D1 expression were downregulated in clinically responsive GTE patients and upregulated in nonresponsive patients at 12 weeks (versus at baseline). An extended (median, 27.5 months) follow-up showed a median time to oral cancer of 46.4 months. GTE may suppress OPLs, in part through reducing angiogenic stimulus (stromal VEGF). Higher doses of GTE may improve short-term (12-week) OPL outcome. The present results support longer-term clinical testing of GTE for oral cancer prevention.

  E. S Kim , W. K Hong , J. J Lee , L Mao , R. C Morice , D. D Liu , C. A Jimenez , G. A Eapen , R Lotan , X Tang , R. A Newman , I. I Wistuba and J. M. Kurie
 

Non–small cell lung cancer is the primary cause of cancer-related death in Western countries. One important approach taken to address this problem is the development of effective chemoprevention strategies. In this study, we examined whether the cyclooxygenase-2 inhibitor celecoxib, as evidenced by decreased cell proliferation, is biologically active in the bronchial epithelium of current and former smokers. Current or former smokers with at least a 20 pack-year (pack-year = number of packs of cigarettes per day times number of years smoked) smoking history were randomized into one of four treatment arms (3-month intervals of celecoxib then placebo, celecoxib then celecoxib, placebo then celecoxib, or placebo then placebo) and underwent bronchoscopies with biopsies at baseline, 3 months, and 6 months. The 204 patients were primarily (79.4%) current smokers: 81 received either low-dose celecoxib or placebo and 123 received either high-dose celecoxib or placebo. Celecoxib was originally administered orally at 200 mg twice daily and the protocol subsequently increased the dose to 400 mg twice daily. The primary end point was change in Ki-67 labeling (from baseline to 3 months) in bronchial epithelium. No cardiac toxicities were observed in the participants. Although the effect of low-dose treatment was not significant, high-dose celecoxib decreased Ki-67 labeling by 3.85% in former smokers and by 1.10% in current smokers—a significantly greater reduction (P = 0.02) than that seen with placebo after adjusting for metaplasia and smoking status. A 3- to 6-month celecoxib regimen proved safe to administer. Celecoxib (400 mg twice daily) was biologically active in the bronchial epithelium of current and former smokers; additional studies on the efficacy of celecoxib in non–small cell lung cancer chemoprevention may be warranted. Cancer Prev Res; 3(2); 148–59

  M Taoudi Benchekroun , P Saintigny , S. M Thomas , A. K El Naggar , V Papadimitrakopoulou , H Ren , W Lang , Y. H Fan , J Huang , L Feng , J. J Lee , E. S Kim , W. K Hong , F. M Johnson , J. R Grandis and L. Mao
 

Leukoplakia is the most common premalignant lesion of the oral cavity. Epidermal growth factor receptor (EGFR) abnormalities are associated with oral tumorigenesis and progression. We hypothesized that EGFR expression and gene copy number changes are predictors of the risk of an oral premalignant lesion (OPL) progressing to oral squamous cell carcinoma (OSCC). A formalin-fixed, paraffin-embedded OPL biopsy specimen was collected from each of 162 patients in a randomized controlled clinical trial. We assessed EGFR expression by immunohistochemistry with two methods: a semiquantitative analysis (145 evaluable specimens) and an automated quantitative analysis (127 evaluable specimens). EGFR gene copy number was assessed by fluorescence in situ hybridization (FISH) in a subset of 49 OPLs with high EGFR expression defined by the semiquantitative analysis. We analyzed EGFR abnormalities for associations with OSCC development. High EGFR expression occurred in 103 (71%) of the 145 OPLs and was associated with a nonsignificantly higher risk of OSCC (P = 0.10). Twenty (41%) of 49 OPLs assessed by FISH had an increased EGFR gene copy number (FISH-positive). Patients with FISH-positive lesions had a significantly higher incidence of OSCC than did patients with FISH-negative (a normal copy number) lesions (P = 0.0007). Of note, 10 of 11 OSCCs that developed at the site of the examined OPL were in the FISH-positive group, leaving only one FISH-negative OPL that did so (P < 0.0001). Our data indicate that an increased EGFR gene copy number is common in and associated with OSCC development in patients with OPLs expressing high EGFR, particularly OSCC developing at the site of a high-expression OPL; they also suggest that EGFR inhibitors may prevent oral cancer in patients with OPLs having an increased EGFR gene copy number. Cancer Prev Res; 3(7); 800–9. ©2010 AACR.

  J Fujimoto , M Kong , J. J Lee , W. K Hong and R. Lotan
 

Lung cancer is the leading cause of cancer death, developing over prolonged periods through genetic and epigenetic changes induced and exacerbated by tobacco exposure. Many epigenetic changes, including DNA methylation and histone methylation and acetylation, are reversible. The use of agents that can modulate these aberrations are a potentially effective approach to cancer chemoprevention. Combined epigenetic-targeting agents have gained interest for their potential to increase efficacy and lower toxicity. The present study applied recently developed statistical methods to validate the combined effects of the demethylating agent 5-aza-2-deoxycytidine (5-AZA-CdR, or AZA, or decitabine) and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA or vorinostat). This validation compared AZA alone with SAHA alone and with their combinations (at later or earlier time points and in varying doses) for inhibiting the growth of cell lines of an in vitro lung carcinogenesis system. This system comprises isogenic premalignant and malignant cells that are immortalized (earlier premalignant), transformed (later premalignant), and tumorigenic human bronchial epithelial cells [immortalized BEAS-2B and its derivatives 1799 (immortalized), 1198 (transformed), and 1170-I (tumorigenic)]. AZA alone and SAHA alone produced a limited (<50%) inhibition of cell growth, whereas combined AZA and SAHA inhibited cell growth more than either agent alone, reaching 90% inhibition under some conditions. Results of drug interaction analyses in the Emax model and semiparametric model supported the conclusion that drug combinations exert synergistic effects (i.e., beyond additivity in the Loewe model). The present results show the applicability of our novel statistical methodology for quantitatively assessing drug synergy across a wide range of doses of agents with complex dose-response profiles, a methodology with great potential for advancing the development of chemopreventive combinations. Cancer Prev Res; 3(8); 917–28. ©2010 AACR.

  J. J Lee , M Natsuizaka , S Ohashi , G. S Wong , M Takaoka , C. Z Michaylira , D Budo , J. W Tobias , M Kanai , Y Shirakawa , Y Naomoto , A. J.P Klein Szanto , V. H Haase and H. Nakagawa
 

Hypoxia-inducible factors (HIFs), in particular HIF-1, have been implicated in tumor biology. However, HIF target genes in the esophageal tumor microenvironment remain elusive. Gene expression profiling was performed upon hypoxia-exposed non-transformed immortalized human esophageal epithelial cells, EPC2-hTERT, and comparing with a gene signature of esophageal squamous cell carcinoma (ESCC). In addition to known HIF-1 target genes such as carbonic anhydrase 9, insulin-like growth factor binding protein-3 (IGFBP3) and cyclooxygenase (COX)-2, prostaglandin E synthase (PTGES) was identified as a novel target gene among the commonly upregulated genes in ESCC as well as the cells exposed to hypoxia. The PTGES induction was augmented upon stabilization of HIF-1 by hypoxia or cobalt chloride under normoxic conditions and suppressed by dominant-negative HIF-1. Whereas PTGES messenger RNA (mRNA) was negatively regulated by normoxia, PTGES protein remained stable upon reoxygenation. Prostaglandin E2 (PGE2) biosynthesis was documented in transformed human esophageal cells by ectopic expression of PTGES as well as RNA interference directed against PTGES. Moreover, hypoxia stimulated PGE2 production in a HIF-1-dependent manner. In ESCC, PTGES was overexpressed frequently at the mRNA and protein levels. Finally, COX-2 and PTGES were colocalized in primary tumors along with HIF-1 and IGFBP3. Activation of the COX-2–PTGES axis in primary tumors was further corroborated by concomitant upregulation of interleukin-1β and downregulation of hydroxylprostaglandin dehydrogenase. Thus, PTGES is a novel HIF-1 target gene, involved in prostaglandin E biosynthesis in the esophageal tumor hypoxic microenvironment, and this has implications in diverse tumors types, especially of squamous origin.

  J Wang , S. M Lippman , J. J Lee , H Yang , F. R Khuri , E Kim , J Lin , D. W Chang , R Lotan , W. K Hong and X. Wu
 

Curatively treated patients with early-stage head and neck squamous cell carcinoma (HNSCC) are at high risks for second primary tumor (SPT) and recurrence. The regulator of G-protein signaling (RGS) is important in essential signaling transduction and cellular activities. We hypothesize that genetic variations of RGS may modulate the risk of SPT/recurrence in patients with early-stage HNSCC. In a nested case–control study, we evaluated 98 single-nucleotide polymorphisms (SNPs) in 17 RGS genes for the risk of SPT/recurrence among 450 HNSCC patients. Eight SNPs showed significant associations with the risk of SPT/recurrence, with the most significant one of rs2179653, which is located in the 5'-flanking region of RGS2 gene. Under a recessive genetic model, the homozygous variant genotype of this SNP was associated with 2.95-fold [95% confidence interval (CI): 1.52–5.74] increased risk of SPT/recurrence. This association remained significant after the adjustment for multiple comparisons. Cumulative effects analysis revealed that the risk increased significantly with the increasing numbers of unfavorable genotypes. Compared with subjects carrying 0–2 unfavorable genotypes, the hazard ratios (95% CIs) for those carrying 3 or 4+ were 1.73 (1.10–2.70) and 3.05 (1.92–4.83), respectively. Furthermore, survival tree analysis revealed potential higher order gene–gene interactions and indicated different outcomes based on distinct genotype profiles. Genetic variations of RGS genes may modulate the susceptibility to SPT/recurrence in early-stage HNSCC patients individually and cumulatively. Our results stressed the importance of taking a polygenic approach to evaluate the cumulative and interaction effects of genetic variations in the prediction of cancer risk and prognosis.

  X Zhang , H Yang , J. J Lee , E Kim , S. M Lippman , F. R Khuri , M. R Spitz , R Lotan , W. K Hong and X. Wu
 

Second primary tumor (SPT) and/or recurrence negatively impact the prognosis of patients with curatively treated early-stage head and neck cancer. MicroRNAs (miRNAs) play important roles in cancer development. We explored whether the variations of miRNA-related pathway were associated with the risk of SPT/recurrence in patients with early-stage head and neck cancer. This study includes 150 early-stage head and neck cancer patients with SPT/recurrence and 300 patients without SPT/recurrence. Two hundred and thirty-five tagging and potentially functional single-nucleotide polymorphisms (SNPs) were genotyped from eight miRNA biogenesis pathway genes and 135 miRNA-targeted genes. Eighteen miRNA-related SNPs were significantly associated with the risk of SPT/recurrence. The most significant SNP was rs3747238, a miRNA-binding site SNP in SMC1B. The variant homozygous genotype of this SNP was associated with a 1.74-fold increased risk [95% confidence interval (CI) 1.19–2.54; P = 0.004]. Cumulative effect analysis showed joint effects for the number of unfavorable genotype in patients. Survival tree analysis further identified the high-order gene–gene interactions and categorized the study subjects into low-, medium- and high-risk groups. Patients in the high-risk group had a 4.84-fold increased risk (95% CI: 3.11–7.51; P = 2.45 x 10–12) and a shorter event-free median survival time of 37.9 months (log rank P = 2.28 x 10–13). Our results suggested that miRNA-related genetic polymorphisms may be used individually and jointly to predict the risk of SPT/recurrence of early-stage head and neck cancer patients.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility