Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by J. H Cheng
Total Records ( 1 ) for J. H Cheng
  M. J Xie , Y. G Ma , F Gao , Y. G Bai , J. H Cheng , Y. M Chang , Z. B Yu and J. Ma
 

Cerebral arterial remodeling is one of the critical factors in the occurrence of postspaceflight orthostatic intolerance. We hypothesize that large-conductance calcium-activated K+ (BKCa) channels in vascular smooth muscle cells (VSMCs) may play an important role in regulating cerebrovascular adaptation during microgravity exposure. The aim of this work was to investigate whether activation of BKCa channels is involved in regulation of apoptotic remodeling of cerebral arteries in simulated microgravity rats. In animal studies, Sprague-Dawley rats were subjected to 1-wk hindlimb unweighting to simulate microgravity. Alterations of BKCa channels in cerebral VSMCs were investigated by patch clamp and Western blotting; apoptosis was assessed by electron microscopy and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end labeling (TUNEL). To evaluate the correlation of BKCa channel and apoptosis, channel protein and cell nucleus were double-stained. In cell studies, hSlo+β1 channel was coexpressed into human embryonic kidney 293 (HEK293) cells to observe the effects of BKCa channels on apoptosis. In rats, enhanced activities and expression of BKCa channels were found to be correlated with increased apoptosis in cerebral VSMCs after simulated microgravity. In transfected HEK293 cells, activation of cloned BKCa channel induced apoptosis, whereas inhibition of cloned BKCa channel decreased apoptosis. In conclusion, activation of BKCa channels is associated with increased apoptosis in cerebral VSMCs of simulated microgravity rats.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility