Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by J. F. P. Wojtaszewski
Total Records ( 4 ) for J. F. P. Wojtaszewski
  C Pehmoller , J. T Treebak , J. B Birk , S Chen , C MacKintosh , D. G Hardie , E. A Richter and J. F. P. Wojtaszewski
 

TBC1D1 is a Rab-GTPase-activating protein (GAP) known to be phosphorylated in response to insulin, growth factors, pharmacological agonists that activate 5'-AMP-activated protein kinase (AMPK), and muscle contraction. Silencing TBC1D1 in L6 muscle cells by siRNA increases insulin-stimulated GLUT4 translocation, and overexpression of TBC1D1 in 3T3-L1 adipocytes with low endogenous TBC1D1 expression inhibits insulin-stimulated GLUT4 translocation, suggesting a role of TBC1D1 in regulating GLUT4 translocation. Aiming to unravel the regulation of TBC1D1 during contraction and the potential role of AMPK in intact skeletal muscle, we used EDL muscles from wild-type (WT) and AMPK kinase dead (KD) mice. We explored the site-specific phosphorylation of TBC1D1 Ser237 and Thr596 and their relation to 14-3-3 binding, a proposed mechanism for regulation of GAP function of TBC1D1. We show that muscle contraction increases 14-3-3 binding to TBC1D1 as well as phosphorylation of Ser237 and Thr596 in an AMPK-dependent manner. AMPK activation by AICAR induced similar Ser237 and Thr596 phosphorylation of, and 14-3-3 binding to, TBC1D1 as muscle contraction. Insulin did not increase Ser237 phosphorylation or 14-3-3 binding to TBC1D1. However, insulin increased Thr596 phosphorylation, and intriguingly this response was fully abolished in the AMPK KD mice. Thus, TBC1D1 is differentially regulated in response to insulin and contraction. This study provides genetic evidence to support an important role for AMPK in regulating TBC1D1 in response to both of these physiological stimuli.

  B Mortensen , P Poulsen , L Wegner , K. L Stender Petersen , R Ribel Madsen , M Friedrichsen , J. B Birk , A Vaag and J. F. P. Wojtaszewski
 

The protein complex AMP-activated protein kinase (AMPK) is believed to play an important role in the regulation of skeletal muscle glucose and lipid metabolism. Defects in the AMPK system might therefore be an important factor in the pathogenesis of type 2 diabetes. We aimed to identify genetic and environmental mechanisms involved in the regulation of AMPK expression and activity and to examine the association between AMPK protein levels and activity on the one hand, and glucose and fat metabolism on the other. We investigated skeletal muscle biopsies from 100 young and 82 older mono- and dizygotic nondiabetic twins excised during the basal and insulin-stimulated states of a physiological hyperinsulinemic-euglycemic clamp. AMPK1, -2, and -3 mRNA expression was investigated using real-time PCR, and Western blotting was employed to measure protein levels. Multiple regression analyses indicated that skeletal muscle AMPK mRNA and protein expression as well as activity were regulated by sex, age, obesity, and aerobic capacity. Comparison of intraclass correlations on AMPK measurements from mono- and dizygotic twins suggested that skeletal muscle AMPK expression was under minor genetic influence. AMPK3 protein expression and activity were negatively related to whole body glucose uptake through the nonoxidative metabolic pathway and positively related to phosphorylation of glycogen synthase. Our results suggest that skeletal muscle AMPK expression is under minor genetic control but regulated by age and sex and associated with obesity and aerobic capacity. Furthermore, our results indicate a role for 3-containing AMPK complexes in downregulation of insulin-stimulated nonoxidative glucose metabolism possibly through inhibition of glycogen synthase activity.

  J. T Treebak , J. B Birk , B. F Hansen , G. S Olsen and J. F. P. Wojtaszewski
 

5'-AMP-activated protein kinase (AMPK) regulates several aspects of metabolism. Recently, A-769662 was shown to activate AMPK in skeletal muscle. However, no biological effects of AMPK activation by A-769662 in this tissue have been reported. We hypothesized that A-769662 would increase glucose uptake in skeletal muscle. We studied incubated soleus and extensor digitorum longus (EDL) muscles from 129S6/sv and C57BL/6 mice. Glucose uptake increased only in soleus from 129S6/sv when concentrations of A-769662 were 500 µM (~15%, P < 0.05) and 1 mM (~60%, P < 0.01). AMPK β1- but not β2-containing complexes were dose dependently activated by A-769662 in muscles from both genotypes (~100% at 200 µM and 300–600% at 1 mM). The discrepancy between the A-769662-induced AMPK activation pattern and stimulation of glucose uptake suggested that these effects were unrelated. A-769662 increased phosphorylation of Akt in both muscles from both genotypes, with phosphorylation of T308 being significantly higher in soleus than in EDL in 129S6/sv mice (P < 0.01). In soleus from 129S6/sv mice, insulin receptor substrate 1-associated phosphatidylinositol 3 (PI3)-kinase activity was markedly increased with A-769662, and Akt phosphorylation and glucose uptake were inhibited by wortmannin while phosphorylation of acetyl-CoA carboxylase (S227) was unaffected. Thus, A-769662 activates β1-containing AMPK complexes in skeletal muscle but induces glucose uptake through a PI3-kinase-dependent pathway. Although development of A-769662 has constituted a step forward in the search for AMPK activators targeting specific AMPK trimers, our data suggest that in intact muscle, A-769662 has off-target effects. This may limit use of A-769662 to study the role of AMPK in skeletal muscle metabolism.

  C Prats , J. W Helge , P Nordby , K Qvortrup , T Ploug , F Dela and J. F. P. Wojtaszewski
 

Glycogen synthase (GS) is considered the rate-limiting enzyme in glycogenesis but still today there is a lack of understanding on its regulation. We have previously shown phosphorylation-dependent GS intracellular redistribution at the start of glycogen re-synthesis in rabbit skeletal muscle (Prats, C., Cadefau, J. A., Cussó, R., Qvortrup, K., Nielsen, J. N., Wojtaszewki, J. F., Wojtaszewki, J. F., Hardie, D. G., Stewart, G., Hansen, B. F., and Ploug, T. (2005) J. Biol. Chem. 280, 23165–23172). In the present study we investigate the regulation of human muscle GS activity by glycogen, exercise, and insulin. Using immunocytochemistry we investigate the existence and relevance of GS intracellular compartmentalization during exercise and during glycogen re-synthesis. The results show that GS intrinsic activity is strongly dependent on glycogen levels and that such regulation involves associated dephosphorylation at sites 2+2a, 3a, and 3a + 3b. Furthermore, we report the existence of several glycogen metabolism regulatory mechanisms based on GS intracellular compartmentalization. After exhausting exercise, epinephrine-induced protein kinase A activation leads to GS site 1b phosphorylation targeting the enzyme to intramyofibrillar glycogen particles, which are preferentially used during muscle contraction. On the other hand, when phosphorylated at sites 2+2a, GS is preferentially associated with subsarcolemmal and intermyofibrillar glycogen particles. Finally, we verify the existence in human vastus lateralis muscle of the previously reported mechanism of glycogen metabolism regulation in rabbit tibialis anterior muscle. After overnight low muscle glycogen level and/or in response to exhausting exercise-induced glycogenolysis, GS is associated with spherical structures at the I-band of sarcomeres.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility