Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by J. C Shih
Total Records ( 2 ) for J. C Shih
  S. H Wang , S. J Lin , Y. H Chen , F. Y Lin , J. C Shih , C. C Wu , H. L Wu and Y. L. Chen
 

Objectives— The number of endothelial progenitor cells (EPCs) that can be obtained from adult bone marrow and peripheral blood to treat cardiovascular diseases is limited. The goal was to examine the endothelial potential of Wharton jelly in human umbilical cord (WJC)-derived stem cells and evaluate their potential to affect neointimal formation after vascular injury.

Methods and Results— Mesenchymal cells (MCs) were isolated from WJC and cultured in endothelial growth medium. Differentiation into late outgrowth endothelial cells (WJC-OECs) was demonstrated by incorporation of acetylated low-density lipoprotein and expression of the endothelial-specific markers. Transplantation of these cells into wire-injured femoral arteries in mice led to rapid reendothelialization. At 4 weeks after injury, the neointima/media area ratio was reduced and strong expression of pigment epithelium-derived factor (PEDF) compared to saline-or MC- or cord blood-OEC-treated mice. WJC-OECs-conditioned medium has an extremely strong capacity to inhibit the migration and proliferation of smooth muscle cells. The effects were inhibited by neutralizing antibody for PEDF and by siRNA silencing of PEDF.

Conclusions— We firstly demonstrated the presence of a cell population within WJC that has the potential to differentiate into OECs. Transplantation of WJC-OECs may play a crucial role in reestablishing endothelial integrity in injured vessels, thereby inhibiting neointimal hyperplasia. These findings have implications for a novel and practical cell-based therapy for vascular diseases.

  N Kaludercic , E Takimoto , T Nagayama , N Feng , E. W Lai , D Bedja , K Chen , K. L Gabrielson , R. D Blakely , J. C Shih , K Pacak , D. A Kass , F Di Lisa and N. Paolocci
 

Rationale: Monoamine oxidases (MAOs) are mitochondrial enzymes that catabolize prohypertrophic neurotransmitters, such as norepinephrine and serotonin, generating hydrogen peroxide. Because excess reactive oxygen species and catecholamines are major contributors to the pathophysiology of congestive heart failure, MAOs could play an important role in this process.

Objective: Here, we investigated the role of MAO-A in maladaptive hypertrophy and heart failure.

Methods and Results: We report that MAO-A activity is triggered in isolated neonatal and adult myocytes on stimulation with norepinephrine, followed by increase in cell size, reactive oxygen species production, and signs of maladaptive hypertrophy. All of these in vitro changes occur, in part, independently from - and β-adrenergic receptor–operated signaling and are inhibited by the specific MAO-A inhibitor clorgyline. In mice with left ventricular dilation and pump failure attributable to pressure overload, norepinephrine catabolism by MAO-A is increased accompanied by exacerbated oxidative stress. MAO-A inhibition prevents these changes, and also reverses fetal gene reprogramming, metalloproteinase and caspase-3 activation, as well as myocardial apoptosis. The specific role of MAO-A was further tested in mice expressing a dominant-negative MAO-A (MAO-Aneo), which were more protected against pressure overload than their wild-type littermates.

Conclusions: In addition to adrenergic receptor–dependent mechanisms, enhanced MAO-A activity coupled with increased intramyocardial norepinephrine availability results in augmented reactive oxygen species generation, contributing to maladaptive remodeling and left ventricular dysfunction in hearts subjected to chronic stress.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility