Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by J. B Hoying
Total Records ( 6 ) for J. B Hoying
  R. P Rhoads , R. M Johnson , C. R Rathbone , X Liu , C Temm Grove , S. M Sheehan , J. B Hoying and R. E. Allen

Muscle regeneration involves the coordination of myogenesis and revascularization to restore proper muscle function. Myogenesis is driven by resident stem cells termed satellite cells (SC), whereas angiogenesis arises from endothelial cells and perivascular cells of preexisting vascular segments and the collateral vasculature. Communication between myogenic and angiogenic cells seems plausible, especially given the number of growth factors produced by SC. To characterize these interactions, we developed an in vitro coculture model composed of rat skeletal muscle SC and microvascular fragments (MVF). In this system, isolated epididymal MVF suspended in collagen gel are cultured over a rat SC monolayer culture. In the presence of SC, MVF exhibit greater indices of angiogenesis than MVF cultured alone. A positive dose-dependent effect of SC conditioned medium (CM) on MVF growth was observed, suggesting that SC secrete soluble-acting growth factor(s). Next, we specifically blocked VEGF action in SC CM, and this was sufficient to abolish satellite cell-induced angiogenesis. Finally, hypoxia-inducible factor-1 (HIF-1), a transcriptional regulator of VEGF gene expression, was found to be expressed in cultured SC and in putative SC in sections of in vivo stretch-injured rat muscle. Hypoxic culture conditions increased SC HIF-1 activity, which was positively associated with SC VEGF gene expression and protein levels. Collectively, these initial observations suggest that a heretofore unexplored aspect of satellite cell physiology is the initiation of a proangiogenic program.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility