Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by J Yang
Total Records ( 20 ) for J Yang
  J Yang , X Liu , J Yu , L Sheng , Y Shi , Z Li , Y Hu , J Xue , L Wu , Y Liang , J Xia and D. Liang
 

Gene therapy has emerged as a promising approach for the lethal disorder of Duchenne muscular dystrophy (DMD). Using a novel non-viral delivery system, the human ribosomal DNA (hrDNA) targeting vector, we targeted a minidystrophin-GFP fusion gene into the hrDNA locus of HT1080 cells with a high site-specific integrated efficiency of 10–5, in which the transgene could express efficiently and continuously. The minidystrophin-GFP fusion protein was easily found to localize on the plasma membrane of HT1080 cells, indicating its possible physiologic performance. Our findings showed that the hrDNA-targeting vector might be highly useful for DMD gene therapy study.

  A Luria , C Morisseau , H. J Tsai , J Yang , B Inceoglu , B De Taeye , S. M Watkins , M. M Wiest , J. B German and B. D. Hammock
 

Soluble epoxide hydrolase (Ephx2, sEH) is a bifunctional enzyme with COOH-terminal hydrolase and NH2-terminal phosphatase activities. sEH converts epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs), and the phosphatase activity is suggested to be involved in cholesterol metabolism. EETs participate in a wide range of biological functions, including regulation of vascular tone, renal tubular transport, cardiac contractility, and inflammation. Inhibition of sEH is a potential approach for enhancing the biological activity of EETs. Therefore, disruption of sEH activity is becoming an attractive therapeutic target for both cardiovascular and inflammatory diseases. To define the physiological role of sEH, we characterized a knockout mouse colony lacking expression of the Ephx2 gene. Lack of sEH enzyme is characterized by elevation of EET to DHET ratios in both the linoleate and arachidonate series in plasma and tissues of both female and male mice. In male mice, this lack of expression was also associated with decreased plasma testosterone levels, sperm count, and testicular size. However, this genotype was still able to sire litters. Plasma cholesterol levels also declined in this genotype. Behavior tests such as anxiety-like behavior and hedonic response were also examined in Ephx2-null and WT mice, as all can be related to hormonal changes. Null mice showed a level of anxiety with a decreased hedonic response. In conclusion, this study provides a broad biochemical, physiological, and behavioral characterization of the Ephx2-null mouse colony and suggests a mechanism by which sEH and its substrates may regulate circulating levels of testosterone through cholesterol biosynthesis and metabolism.

  J Yang , Y Park , H Zhang , X Xu , G. A Laine , K. C Dellsperger and C. Zhang
 

We hypothesized that the interaction between tumor necrosis factor- (TNF-)/nuclear factor-B (NF-B) via the activation of IKK-β may amplify one another, resulting in the evolution of vascular disease and insulin resistance associated with diabetes. To test this hypothesis, endothelium-dependent (ACh) and -independent (sodium nitroprusside) vasodilation of isolated, pressurized coronary arterioles from mLeprdb (heterozygote, normal), Leprdb (homozygote, diabetic), and Leprdb mice null for TNF- (dbTNF–/dbTNF–) were examined. Although the dilation of vessels to sodium nitroprusside was not different between Leprdb and mLeprdb mice, the dilation to ACh was reduced in Leprdb mice. The NF-B antagonist MG-132 or the IKK-β inhibitor sodium salicylate (NaSal) partially restored nitric oxide-mediated endothelium-dependent coronary arteriolar dilation in Leprdb mice, but the responses in mLeprdb mice were unaffected. The protein expression of IKK- and IKK-β were higher in Leprdb than in mLeprdb mice; the expression of IKK-β, but not the expression of IKK-, was attenuated by MG-132, the antioxidant apocynin, or the genetic deletion of TNF- in diabetic mice. Leprdb mice showed an increased insulin resistance, but NaSal improved insulin sensitivity. The protein expression of TNF- and NF-B and the protein modification of phosphorylated (p)-IKK-β and p-JNK were greater in Leprdb mice, but NaSal attenuated TNF-, NF-B, p-IKK-β, and p-JNK in Leprdb mice. The ratio of p-insulin receptor substrate (IRS)-1 at Ser307 to IRS-1 was elevated in Leprdb compared with mLeprdb mice; both NaSal and the JNK inhibitor SP-600125 reduced the p-IRS-1-to-IRS-1 ratio in Leprdb mice. MG-132 or the neutralization of TNF- reduced superoxide production in Leprdb mice. In conclusion, our results indicate that the interaction between NF-B and TNF- signaling induces the activation of IKK-β and amplifies oxidative stress, leading to endothelial dysfunction in type 2 diabetes.

  N Ghasemlou , D Bouhy , J Yang , R Lopez Vales , M Haber , T Thuraisingam , G He , D Radzioch , A Ding and S. David
 

Secretory leukocyte protease inhibitor is a serine protease inhibitor produced by various cell types, including neutrophils and activated macrophages, and has anti-inflammatory properties. It has been shown to promote wound healing in the skin and other non-neural tissues, however, its role in central nervous system injury was not known. We now report a beneficial role for secretory leukocyte protease inhibitor after spinal cord injury. After spinal cord contusion injury in mice, secretory leukocyte protease inhibitor is expressed primarily by astrocytes and neutrophils but not macrophages. We show, using transgenic mice over-expressing secretory leukocyte protease inhibitor, that this molecule has an early protective effect after spinal cord contusion injury. Furthermore, wild-type mice treated for the first week after spinal cord contusion injury with recombinant secretory leukocyte protease inhibitor exhibit sustained improvement in locomotor control and reduced secondary tissue damage. Recombinant secretory leukocyte protease inhibitor injected intraperitoneally localizes to the nucleus of circulating leukocytes, is detected in the injured spinal cord, reduces activation of nuclear factor-B and expression of tumour necrosis factor-. Administration of recombinant secretory leukocyte protease inhibitor might therefore be useful for the treatment of acute spinal cord injury.

  Y Cheng , X Liu , J Yang , Y Lin , D. Z Xu , Q Lu , E. A Deitch , Y Huo , E. S Delphin and C. Zhang
 

Phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a critical role in the pathogenesis of a variety of proliferative vascular diseases. Recently, we have found that microRNA (miRNA) miR-145 is the most abundant miRNA in normal vascular walls and in freshly isolated VSMCs; however, the role of miR-145 in VSMC phenotypic modulation and vascular diseases is currently unknown. Here we find that miR-145 is selectively expressed in VSMCs of the vascular wall and its expression is significantly downregulated in the vascular walls with neointimal lesion formation and in cultured dedifferentiated VSMCs. More importantly, both in cultured rat VSMCs in vitro and in balloon-injured rat carotid arteries in vivo, we demonstrate that the noncoding RNA miR-145 is a novel phenotypic marker and a novel phenotypic modulator of VSMCs. VSMC differentiation marker genes such as SM -actin, calponin, and SM-MHC are upregulated by premiR-145 or adenovirus expressing miR-145 (Ad-miR-145) but are downregulated by the miR-145 inhibitor 2'OMe-miR-145. We have further identified that miR-145-mediated phenotypic modulation of VSMCs is through its target gene KLF5 and its downstream signaling molecule, myocardin. Finally, restoration of miR-145 in balloon-injured arteries via Ad-miR-145 inhibits neointimal growth. We conclude that miR-145 is a novel VSMC phenotypic marker and modulator that is able of controlling vascular neointimal lesion formation. These novel findings may have extensive implications for the diagnosis and therapy of a variety of proliferative vascular diseases.

  N Dong , S Chen , J Yang , L He , P Liu , D Zheng , L Li , Y Zhou , C Ruan , E Plow and Q. Wu
 

Background— Corin is a transmembrane protease that processes natriuretic peptides in the heart. Like many membrane proteins, corin is shed from the cell surface.

Methods and Results— In this study, we obtained plasma samples from healthy controls and patients with heart failure (HF) and acute myocardial infarction. Soluble corin levels in plasma were measured by an ELISA method. In healthy adults (n=198), plasma corin levels were 690 pg/mL (SD, 260 pg/mL). The corin levels did not differ significantly among different age groups. In patients with HF (n=291), plasma corin levels were significantly lower compared with that of healthy controls (365 pg/mL [SD, 259]; P<0.001). The reduction in plasma corin levels seemed to correlate with the severity of HF. In patients of New York Heart Association classes II, III, and IV, plasma corin levels were 450 pg/mL (SD, 281 pg/mL; n=69), 377 pg/mL (SD, 270 pg/mL; n=132), and 282 pg/mL (SD, 194 pg/mL; n=90), respectively (P<0.001 class II vs class IV; P<0.05 class III vs class IV). In contrast, plasma corin levels in patients with acute myocardial infarction (n=73) were similar to that of healthy controls (678 pg/mL [SD, 285 pg/mL]; P>0.05).

Conclusions— Soluble corin was detected in human plasma. Plasma corin levels were reduced significantly in patients with HF but not in those with acute myocardial infarction. Our results indicate that corin deficiency may contribute to the pathogenesis of HF and that plasma corin may be used as a biomarker in the diagnosis of HF.

  L Xia , Y Zhu , J Yang , J Ye and Z. Gu
 

As power dissipation causes thermal issues in cooling costs, lifetime and reliability, thermal management has become an important issue in today's OS and processor design. Early OS-level thermal management schemes were proposed and evaluated mainly with simulators or analytical models. In this paper, we implement a thermal-aware round-robin scheduling algorithm in the Linux kernel, and compare its performance with the ‘Heat-and-Run’ algorithm and the default Linux baseline scheduler on an Intel Core 2 Duo processor using representative benchmarks from SPEC2000, MiBench and NetBench. Our results indicate that the current Linux scheduler can easily be enhanced with thermal-awareness to show improved performance in terms of both the on-chip temperature condition and application throughput.

  Y Zhang , S Li , L Yuan , Y Tian , J Weidenfeld , J Yang , F Liu , A. L Chokas and E. E. Morrisey
 

Cardiomyocyte proliferation is high in early development and decreases progressively with gestation, resulting in the lack of a robust cardiomyocyte proliferative response in the adult heart after injury. Little is understood about how both cell-autonomous and nonautonomous signals are integrated to regulate the balance of cardiomyocyte proliferation during development. In this study, we show that a single transcription factor, Foxp1, can control the balance of cardiomyocyte proliferation during development by targeting different pathways in the endocardium and myocardium. Endocardial loss of Foxp1 results in decreased Fgf3/Fgf16/Fgf17/Fgf20 expression in the heart, leading to reduced cardiomyocyte proliferation. This loss of myocardial proliferation can be rescued by exogenous Fgf20, and is mediated, in part, by Foxp1 repression of Sox17. In contrast, myocardial-specific loss of Foxp1 results in increased cardiomyocyte proliferation and decreased differentiation, leading to increased myocardial mass and neonatal demise. We show that Nkx2.5 is a direct target of Foxp1 repression, and Nkx2.5 expression is increased in Foxp1-deficient myocardium. Moreover, transgenic overexpression of Nkx2.5 leads to increased cardiomyocyte proliferation and increased ventricular mass, similar to the myocardial-specific loss of Foxp1. These data show that Foxp1 coordinates the balance of cardiomyocyte proliferation and differentiation through cell lineage-specific regulation of Fgf ligand and Nkx2.5 expression.

  Z. A Rasheed , J Yang , Q Wang , J Kowalski , I Freed , C Murter , S. M Hong , J. B Koorstra , N. V Rajeshkumar , X He , M Goggins , C Iacobuzio Donahue , D. M Berman , D Laheru , A Jimeno , M Hidalgo , A Maitra and W. Matsui
  Background

Specific populations of highly tumorigenic cells are thought to exist in many human tumors, including pancreatic adenocarcinoma. However, the clinical significance of these tumor-initiating (ie, cancer stem) cells remains unclear. Aldehyde dehydrogenase (ALDH) activity can identify tumor-initiating cells and normal stem cells from several human tissues. We examined the prognostic significance and functional features of ALDH expression in pancreatic adenocarcinoma.

Methods

ALDH expression was analyzed by immunohistochemistry in 269 primary surgical specimens of pancreatic adenocarcinoma and examined for association with clinical outcomes and in paired primary tumors and metastatic lesions from eight pancreatic cancer patients who had participated in a rapid autopsy program. The clonogenic growth potential of ALDH-positive pancreatic adenocarcinoma cells was assessed in vitro by a colony formation assay and by tumor growth in immunodeficient mice (10–14 mice per group). Mesenchymal features of ALDH-positive pancreatic tumor cells were examined by using quantitative reverse transcription–polymerase chain reaction and an in vitro cell invasion assay. Gene expression levels and the invasive potential of ADLH-positive pancreatic cancer cells relative to the bulk cell population were examined by reverse transcription–polymerase chain reaction and an in vitro invasion assays, respectively. All statistical tests were two-sided.

Results

ALDH-positive tumor cells were detected in 90 of the 269 primary surgical specimens, and their presence was associated with worse survival (median survival for patients with ALDH-positive vs ALDH-negative tumors: 14 vs 18 months, hazard ratio of death = 1.28, 95% confidence interval = 1.02 to 1.68, P = .05). Six (75%) of the eight patients with matched primary and metastatic tumor samples had ALDH-negative primary tumors, and in four (67%) of these six patients, the matched metastatic lesions (located in liver and lung) contained ALDH-positive cells. ALDH-positive cells were approximately five- to 11-fold more clonogenic in vitro and in vivo compared with unsorted or ALHD-negative cells, expressed genes consistent with a mesenchymal state, and had in vitro migratory and invasive potentials that were threefold greater than those of unsorted cells.

Conclusions

ALDH expression marks pancreatic cancer cells that have stem cell and mesenchymal features. The enhanced clonogenic growth and migratory properties of ALDH-positive pancreatic cancer cells suggest that they play a key role in the development of metastatic disease that negatively affects the overall survival of patients with pancreatic adenocarcinoma.

  X Shen , G. b Hu , S. j Jiang , F. r He , W Xing , L Li , J Yang , H. f Zhu , P Lei and G. x. Shen
 

Transferrin receptor (TfR) has been explored as a target for antibody-based therapy of cancer. In the previous study, we reported a murine anti-TfR monoclonal antibody (mAb) 7579 had good anti-tumor activities in vitro. In an attempt to reduce its immunogenicity and enhance its ability to recruit immune effector mechanism in vivo, we herein developed its chimera in the baculovirus/insect cell expression system based on the mating-assisted genetically integrated cloning (MAGIC) strategy. The chimeric light and heavy chains, containing human IgG1 constant regions, were correctly processed and assembled in insect cells, and then secreted into the mediums as heterodimeric H2L2 immunoglobulins. Furthermore, analyses of antigen-binding assay and competitive binding assay indicated that the chimeric antibody possessed specificity and affinity similar to that of its parental murine antibody. Results of the antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assay verified that the chimeric antibody could efficiently mediate ADCC and CDC against TfR-overexpressing tumor cells. These results suggested that this baculovirus-expressed chimeric anti-TfR IgG1 might have the potential to be used for cancer immunotherapy. Meanwhile, the MAGIC strategy, facilitating the rapid generation of chimeric mAbs, could be one of the efficient strategies for antibody engineering.

  X Liu , Y Cheng , J Yang , T. J Krall , Y Huo and C. Zhang
 

It is well established that vascular smooth muscle cell (VSMC) apoptosis and proliferation are critical cellular events in a variety of human vascular diseases. However, the molecular mechanisms involved in controlling VSMC apoptosis and proliferation are still unclear. In the current study, we have found that programmed cell death 4 (PDCD4) is significantly downregulated in balloon-injured rat carotid arteries in vivo and in platelet-derived growth factor-stimulated VSMCs in vitro. Overexpression of PDCD4 via adenovirus (Ad-PDCD4) increases VSMC apoptosis in an apoptotic model induced by serum deprivation. In contrast, VSMC apoptosis is significantly decreased by knockdown of PDCD4 via its small interfering RNA. In the rat carotid arteries in vivo, VSMC apoptosis is increased by Ad-PDCD4. We have further identified that activator protein 1 is a downstream signaling molecule of PDCD4 that is associated with PDCD4-mediated effects on VSMC apoptosis. In addition, VSMC proliferation was inhibited by overexpression of PDCD4. The current study has identified, for the first time, that PDCD4 is an essential regulator of VSMC apoptosis and proliferation. The downregulation of PDCD4 expression in diseased vascular walls may be responsible for the imbalance of VSMC proliferation and apoptosis. The results indicate that PDCD4 may be a new therapeutic target in proliferative vascular diseases.

  X Fei , M Eriksson , J Yang and X. Deng
 

Iron is essential to the unicellular green alga Chlamydomonas, but the molecular mechanism for response to iron deficiency remains largely unknown. In previous studies, we have identified FOX1 and ATX1 FEREs (Fe deficiency-responsive elements) as important regulation components of iron response in this organism. Here we present another iron regulated gene FEA1, which promoter was analysed by using a 5'-and 3'-end deletion and a scanning mutagenesis assay. The results reveal that the co-existence of –273/–188 and –118/–49 regions from transcriptional start site of FEA1 were sufficient and necessary for Fe deficiency-induced expression. Further deletion analysis indicates both –273/–253 and –103/–85 regions are essential for inducible expression. The scanning mutagenesis analysis of these regions identifies two cis-acting elements: the FeaFeRE1 at –273/–259 (CTGCGGTGGCAAAGT) and FeaFeRE2 at –106/–85 (CCGCCGCNNNTGGCACCAGCCT). Sequence comparison of FeaFeRE1 and FeaFeRE2 reveals a core sequence of TGGCA, which had been found in our previously reported Fe-deficiency-inducible gene ATX1. Moreover, we show that the promoter region of several genes, including FRE1, IRT1, ISCA, ZRT1, ZRT5, NRAMP2 and COPT1, also contains this core sequence, suggesting that at least two classes FeRE elements exist in Clamydomonas, one in FEA1 and ATX1 and others the second in FOX1, FEA2, MTP4, NRAMP3 and RBOL1.

  X Kong , H Gan , Y Hao , C Cheng , J Jiang , Y Hong , J Yang , H Zhu , Y Chi , X Yun and J. Gu
 

CDK11p58, a CDK11 family Ser/Thr kinase, is a G2/M specific protein and contributed to regulation of cell cycle, transcription and apoptotic signal transduction. Recently, CDK11p58 has been reported to exert important functions in mitotic process, such as the regulation of bipolar spindle formation and sister chromatid cohesion. Here, we identified p21 activated kinase 1 (PAK1) as a new CDK11p58 substrate and we mapped a new phosphorylation site of Ser174 on PAK1. By mutagenesis, we created PAK1174A and PAK1174E, which mimic the dephosphorylated and phosphorylated form of PAK1; further analysis showed PAK1174E could be recruited to myosin V motor complex through binding to dynein light chain 2 (DLC2). PAK1174E could accelerate the mitosis progression in a nocodazole blocked cell model, while PAK1174A exhibited an opposite role. Our results indicated PAK1 may serve as a downstream effector of CDK11p58 during mitosis progression.

  J Yang , R Yoshida , Y Kariya , X Zhang , S Hashiguchi , T Nakashima , Y Suda , A Takada , Y Ito and K. Sugimura
 

The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI) H5N1 virus infection in humans is urgently needed. Neutralizing recombinant human antibodies would provide important agents for immunotherapy on human H5N1 virus infection and definition of the critical mimotope for vaccine development. In this study, we have characterized an anti-H5-specific scFv clone, 3D1 from the human-scFv-displaying phage library. 3D1 blocked the binding of H5-Fc to MDCK cells in flow cytometry and neutralized H5N1 subtype influenza A viruses in a microneutralization assay. Employing a peptide-displaying phage library, Ph.D-12, the mimotope was determined to be at #128-131 and #204-211 of H5, which are silic acid-binding regions. In consistency with this result, 3D1 binds the recombinant sugar-binding domain (#50G-#272E) produced by a baculovirus vector. The 3D1 antibody employs the germline gene VH1-23. As this antibody is the first human anti-H5 scFv clearly defined on the sugar-binding epitope, it allows us to investigate the influence of amino acid substitutions in this region on the determination of the binding specificity to either sialic acid 2,6-galactose (SA 2,6Gal) or sialic acid 2,3-galactose (SA 2,3Gal) providing new insight for the development of effective H5N1 pandemic vaccines.

  M. A Esteban , J Xu , J Yang , M Peng , D Qin , W Li , Z Jiang , J Chen , K Deng , M Zhong , J Cai , L Lai and D. Pei
 

Induced pluripotent stem cell (iPS) technology appears to be a general strategy to generate pluripotent stem cells from any given mammalian species. So far, iPS cells have been reported for mouse, human, rat, and monkey. These four species have also established embryonic stem cell (ESC) lines that serve as the gold standard for pluripotency comparisons. Attempts have been made to generate porcine ESC by various means without success. Here we report the successful generation of pluripotent stem cells from fibroblasts isolated from the Tibetan miniature pig using a modified iPS protocol. The resulting iPS cell lines more closely resemble human ESC than cells from other species, have normal karyotype, stain positive for alkaline phosphatase, express high levels of ESC-like markers (Nanog, Rex1, Lin28, and SSEA4), and can differentiate into teratomas composed of the three germ layers. Because porcine physiology closely resembles human, the iPS cells reported here provide an attractive model to study certain human diseases or assess therapeutic applications of iPS in a large animal model.

  Y Xu , L Yuan , J Mak , L Pardanaud , M Caunt , I Kasman , B Larrivee , R del Toro , S Suchting , A Medvinsky , J Silva , J Yang , J. L Thomas , A. W Koch , K Alitalo , A Eichmann and A. Bagri
 

If neuropilin-2 and the growth factor VEGF-C don’t come together, lymphatic vessels don’t branch apart.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility