Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by J Xing
Total Records ( 5 ) for J Xing
  Y Liu , S Shete , L. E Wang , R El Zein , C. J Etzel , F. W Liang , G Armstrong , S Tsavachidis , M. R Gilbert , K. D Aldape , J Xing , X Wu , Q Wei and M. L. Bondy
 

Background: DNA strand breaks pose the greatest threat to genomic stability. Genetically determined mutagen sensitivity predisposes individuals to a variety of cancers, including glioma. However, polymorphisms in DNA strand break repair genes that may determine mutagen sensitivity are not well studied in cancer risk, especially in gliomas.

Methods: We correlated genotype data for tag single-nucleotide polymorphisms (tSNPs) of DNA strand break repair genes with a gamma-radiation-induced mutagen sensitivity phenotype [expressed as mean breaks per cell (B/C)] in samples from 426 glioma patients. We also conducted analysis to assess joint and haplotype effects of single-nucleotide polymorphisms (SNPs) on mutagen sensitivity. We further validate our results in an independent external control group totaling 662 subjects.

Results: Of the 392 tSNPs examined, we found that mutagen sensitivity was modified by one tSNP in the EME2 gene and six tSNPs in the RAD51L1 gene (P < 0.01). Among the six RAD51L1 SNPs tested in the validation set, one (RAD51L1 rs2180611) was significantly associated with mutagen sensitivity (P = 0.025). Moreover, we found a significant dose–response relationship between the mutagen sensitivity and the number of adverse tSNP genotypes. Furthermore, haplotype analysis revealed that RAD51L1 haplotypes F-A (zero adverse allele) and F-E (six adverse alleles) exhibited the lowest (0.42) and highest (0.93) mean B/C values, respectively. A similar dose–response relationship also existed between the mutagen sensitivity and the number of adverse haplotypes.

Conclusion: These results suggest that polymorphisms in and haplotypes of the RAD51L1 gene, which is involved in the double-strand break repair pathway, modulate gamma-radiation-induced mutagen sensitivity.

  C Zhang , C Wang , X Chen , C Yang , K Li , J Wang , J Dai , Z Hu , X Zhou , L Chen , Y Zhang , Y Li , H Qiu , J Xing , Z Liang , B Ren , K Zen and C. Y. Zhang
  BACKGROUND:

Sensitive and specific biomarkers for the early detection of esophageal squamous cell carcinoma (ESCC) are urgently needed to reduce the high morbidity and mortality of the disease. The discovery of serum microRNAs (miRNAs) and their unique concentration profiles in patients with various diseases makes them attractive, novel noninvasive biomarkers for tumor diagnosis. In this study, we investigated the serum miRNA profile in ESCC patients to develop a novel diagnostic ESCC biomarker.

METHODS:

Serum samples were taken from 290 ESCC patients and 140 age- and sex-matched controls. Solexa sequencing technology was used for an initial screen of miRNAs in serum samples from 141 patients and 40 controls. A hydrolysis probe–based stem–loop quantitative reverse-transcription PCR (RT-qPCR) assay was conducted in the training and verification phases to confirm the concentrations of selected miRNAs in serum samples from 149 patients and 100 controls.

RESULTS:

The Solexa sequencing results demonstrated marked upregulation of 25 serum miRNAs in ESCC patients compared with controls. RT-qPCR analysis identified a profile of 7 serum miRNAs (miR-10a, miR-22, miR-100, miR-148b, miR-223, miR-133a, and miR-127-3p) as ESCC biomarkers. The area under the ROC curve for the selected miRNAs ranged from 0.817 to 0.949, significantly higher than for carcinoembryonic antigen (0.549; P < 0.0005). More importantly, this panel of 7 miRNAs clearly distinguished stage I/II ESCC patients from controls.

CONCLUSIONS:

This panel of 7 serum miRNAs holds promise as a novel blood-based biomarker for the diagnosis of ESCC.

  J Xing , Y Zhang , K Han , A. H Salem , S. K Sen , C. D Huff , Q Zhou , E. F Kirkness , S Levy , M. A Batzer and L. B. Jorde
 

Structural variants (SVs) are common in the human genome. Because approximately half of the human genome consists of repetitive, transposable DNA sequences, it is plausible that these elements play an important role in generating SVs in humans. Sequencing of the diploid genome of one individual human (HuRef) affords us the opportunity to assess, for the first time, the impact of mobile elements on SVs in an individual in a thorough and unbiased fashion. In this study, we systematically evaluated more than 8000 SVs to identify mobile element-associated SVs as small as 100 bp and specific to the HuRef genome. Combining computational and experimental analyses, we identified and validated 706 mobile element insertion events (including Alu, L1, SVA elements, and nonclassical insertions), which added more than 305 kb of new DNA sequence to the HuRef genome compared with the Human Genome Project (HGP) reference sequence (hg18). We also identified 140 mobile element-associated deletions, which removed ~126 kb of sequence from the HuRef genome. Overall, ~10% of the HuRef-specific indels larger than 100 bp are caused by mobile element-associated events. More than one-third of the insertion/deletion events occurred in genic regions, and new Alu insertions occurred in exons of three human genes. Based on the number of insertions and the estimated time to the most recent common ancestor of HuRef and the HGP reference genome, we estimated the Alu, L1, and SVA retrotransposition rates to be one in 21 births, 212 births, and 916 births, respectively. This study presents the first comprehensive analysis of mobile element-related structural variants in the complete DNA sequence of an individual and demonstrates that mobile elements play an important role in generating inter-individual structural variation.

  A Damert , J Raiz , A. V Horn , J Lower , H Wang , J Xing , M. A Batzer , R Lower and G. G. Schumann
 

SVA elements represent the youngest family of hominid non-LTR retrotransposons, which alter the human genome continuously. They stand out due to their organization as composite repetitive elements. To draw conclusions on the assembly process that led to the current organization of SVA elements and on their transcriptional regulation, we initiated our study by assessing differences in structures of the 116 SVA elements located on human chromosome 19. We classified SVA elements into seven structural variants, including novel variants like 3'-truncated elements and elements with 5'-flanking sequence transductions. We established a genome-wide inventory of 5'-transduced SVA elements encompassing ~8% of all human SVA elements. The diversity of 5' transduction events found indicates transcriptional control of their SVA source elements by a multitude of external cellular promoters in germ cells in the course of their evolution and suggests that SVA elements might be capable of acquiring 5' promoter sequences. Our data indicate that SVA-mediated 5' transduction events involve alternative RNA splicing at cryptic splice sites. We analyzed one remarkably successful human-specific SVA 5' transduction group in detail because it includes at least 32% of all SVA subfamily F members. An ancient retrotransposition event brought an SVA insertion under transcriptional control of the MAST2 gene promoter, giving rise to the primal source element of this group. Members of this group are currently transcribed. Here we show that SVA-mediated 5' transduction events lead to structural diversity of SVA elements and represent a novel source of genomic rearrangements contributing to genomic diversity.

  J Xing , J. J Jayasundar , Y Ouyang and W. J. Dong
 

Cardiac thin filament deactivation is initiated by Ca2+ dissociation from troponin C (cTnC), followed by multiple structural changes of thin filament proteins. These structural transitions are the molecular basis underlying the thin filament regulation of cardiac relaxation, but the detailed mechanism remains elusive. In this study Förster resonance energy transfer (FRET) was used to investigate the dynamics and kinetics of the Ca2+-induced conformational changes of the cardiac thin filaments, specifically the closing of the cTnC N-domain, the cTnC-cTnI (troponin I) interaction, and the cTnI-actin interaction. The cTnC N-domain conformational change was examined by monitoring FRET between a donor (AEDANS) attached to one cysteine residue and an acceptor (DDPM) attached the other cysteine of the mutant cTnC(L13C/N51C). The cTnC-cTnI interaction was investigated by monitoring the distance changes from residue 89 of cTnC to residues 151 and 167 of cTnI, respectively. The cTnI-actin interaction was investigated by monitoring the distance changes from residues 151 and 167 of cTnI to residue 374 of actin. FRET Ca2+ titrations and stopped-flow kinetic measurements show that different thin filament structural transitions have different Ca2+ sensitivities and Ca2+ dissociation-induced kinetics. The observed structural transitions involving the regulatory region and the mobile domain of cTnI occurred at fast kinetic rates, whereas the kinetics of the structural transitions involving the cTnI inhibitory region was slow. Our results suggest that the thin filament deactivation upon Ca2+ dissociation is a two-step process. One step involves rapid binding of the mobile domain of cTnI to actin, which is kinetically coupled with the conformational change of the N-domain of cTnC and the dissociation of the regulatory region of cTnI from cTnC. The other step involves switching the inhibitory region of cTnI from interacting with cTnC to interacting with actin. The latter processes may play a key role in regulating cross-bridge kinetics.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility