Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by J Patel
Total Records ( 2 ) for J Patel
  J Xu , S Stanislaus , N Chinookoswong , Y. Y Lau , T Hager , J Patel , H Ge , J Weiszmann , S. C Lu , M Graham , J Busby , R Hecht , Y. S Li , Y Li , R Lindberg and M. M. Veniant
 

Recombinant fibroblast growth factor (FGF)21 has antihyperglycemic, antihyperlipidemic, and antiobesity effects in diabetic rodent and monkey models. Previous studies were confined to measuring steady-state effects of FGF21 following subchronic or chronic administration. The present study focuses on the kinetics of biological actions of FGF21 following a single injection and on the associated physiological and cellular mechanisms underlying FGF21 actions. We show that FGF21 resulted in rapid decline of blood glucose levels and immediate improvement of glucose tolerance and insulin sensitivity in two animal models of insulin resistance (ob/ob and DIO mice). In ob/ob mice, FGF21 led to a 40–60% decrease in blood glucose, insulin, and amylin levels within 1 h after injection, and the maximal effects were sustained for more than 6 h despite the 1- to 2-h half-life of FGF21. In DIO mice, FGF21 reduced fasting blood glucose and insulin levels and improved glucose tolerance and insulin sensitivity within 3 h of treatment. The acute improvement of glucose metabolism was associated with a 30% reduction of hepatic glucose production and an increase in peripheral glucose turnover. FGF21 appeared to have no direct effect on ex vivo pancreatic islet insulin or glucagon secretion. However, it rapidly induced typical FGF signaling in liver and adipose tissues and in several hepatoma-derived cell lines and differentiated adipocytes. FGF21 was able to inhibit glucose release from H4IIE hepatoma cells and stimulate glucose uptake in 3T3-L1 adipocytes. We conclude that the acute glucose-lowering and insulin-sensitizing effects of FGF21 are potentially associated with its metabolic actions in liver and adipose tissues.

  P Kirk , M Roughton , J.B Porter , J.M Walker , M.A Tanner , J Patel , D Wu , J Taylor , M.A Westwood , L.J Anderson and D.J. Pennell
 

Background— The goal of this study was to determine the predictive value of cardiac T2* magnetic resonance for heart failure and arrhythmia in thalassemia major.

Methods and Results— We analyzed cardiac and liver T2* magnetic resonance and serum ferritin in 652 thalassemia major patients from 21 UK centers with 1442 magnetic resonance scans. The relative risk for heart failure with cardiac T2* values <10 ms (compared with >10 ms) was 160 (95% confidence interval, 39 to 653). Heart failure occurred in 47% of patients within 1 year of a cardiac T2* <6 ms with a relative risk of 270 (95% confidence interval, 64 to 1129). The area under the receiver-operating characteristic curve for predicting heart failure was significantly greater for cardiac T2* (0.948) than for liver T2* (0.589; P<0.001) or serum ferritin (0.629; P<0.001). Cardiac T2* was <10 ms in 98% of scans in patients who developed heart failure. The relative risk for arrhythmia with cardiac T2* values <20 ms (compared with >20 ms) was 4.6 (95% confidence interval, 2.66 to 7.95). Arrhythmia occurred in 14% of patients within 1 year of a cardiac T2* of <6 ms. The area under the receiver-operating characteristic curve for predicting arrhythmia was significantly greater for cardiac T2* (0.747) than for liver T2* (0.514; P<0.001) or serum ferritin (0.518; P<0.001). The cardiac T2* was <20 ms in 83% of scans in patients who developed arrhythmia.

Conclusions— Cardiac T2* magnetic resonance identifies patients at high risk of heart failure and arrhythmia from myocardial siderosis in thalassemia major and is superior to serum ferritin and liver iron. Using cardiac T2* for the early identification and treatment of patients at risk is a logical means of reducing the high burden of cardiac mortality in myocardial siderosis.

Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifier: NCT00520559.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility