Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by J Ito
Total Records ( 2 ) for J Ito
  R Moriya , T Shirakura , J Ito , S Mashiko and T. Seo
 

Glucose ingestion stimulates the secretion of the incretin hormones, glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide-1 (GLP-1). Despite the critical role of incretins in glucose homeostasis, the mechanism of glucose-induced incretin secretion has not been established. We investigated the underlying mechanism of glucose-induced incretin secretion in vivo in mice. Injection of glucose at 1 g/kg in the upper intestine significantly increased plasma GIP and GLP-1 levels, whereas injection of glucose in the colon did not increase GIP or GLP-1 levels. This finding indicates that the glucose sensor for glucose-induced incretin secretion is in the upper intestine. Coadministration of a sodium-glucose cotransporter-1 (SGLT1) inhibitor, phloridzin, with glucose in the upper intestine blocked glucose absorption and glucose-induced incretin secretion. -methyl-d-glucopyranoside (MDG), an SGLT1 substrate that is a nonmetabolizable sugar, significantly increased plasma GIP and GLP-1 levels, whereas phloridzin blocked these increases, indicating that concomitant transport of sodium ions and glucose (substrate) via SGLT1 itself triggers incretin secretion without the need for subsequent glucose metabolism. Interestingly, oral administration of MDG significantly increased plasma GIP, GLP-1, and insulin levels and reduced blood glucose levels during an intraperitoneal glucose tolerance test. Furthermore, chronic MDG treatment in drinking water (3%) for 13 days reduced blood glucose levels after a 2-h fast and in an oral glucose tolerance test in diabetic db/db mice. Our findings indicate that SGLT1 serves as the intestinal glucose sensor for glucose-induced incretin secretion and that a noncalorigenic SGLT1 substrate ameliorates hyperglycemia by stimulating incretin secretion.

  R Lu , J Ito , N Iwamoto , T Nishimaki Mogami and S. Yokoyama
 

Fibroblast growth factor 1 (FGF-1) enhances apolipoprotein E (apoE) expression and apoE-HDL biogenesis in autocrine fashion in astrocytes (Ito, J., Y. Nagayasu, R. Lu, A. Kheirollah, M. Hayashi, and S. Yokoyama. Astrocytes produce and secrete FGF-1, which promotes the production of apoE-HDL in a manner of autocrine action. J. Lipid Res. 2005. 46: 679–686) associated with healing of brain injury (Tada,T., J-i. Ito, M. Asai, and S. Yokoyama. Fibroblast growth factor 1 is produced prior to apolipoprotein E in the astrocytes after cryo-injury of mouse brain. Neurochem. Int. 2004. 45: 23–30). FGF-1 stimulates mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) to increase cholesterol biosynthesis and phosphatidylinositol 3-OH kinase (PI3K)/Akt to enhance apoE-HDL secretion (Ito, J., Y. Nagayasu, K. Okumura-Noji, R. Lu, T. Nishida, Y. Miura, K. Asai, A. Kheirollah, S. Nakaya, and S. Yokoyama. Mechanism for FGF-1 to regulate biogenesis of apoE-HDL in astrocytes. J. Lipid Res. 2007. 48: 2020–2027). We investigated the mechanism for FGF-1 to upregulate apoE transcription. FGF-1 increased apoE and liver X receptor (LXR) mRNAs in rat astrocytes. Increase of LXR mRNA was suppressed by inhibition of the FGF-1 receptor-1 and MEK/ERK but not by inhibition of PI3K/Akt. The increases of apoE mRNA and apoE-HDL secretion were both inhibited by downregulation or inhibition of LXR, while they were partially suppressed by inhibiting cholesterol biosynthesis. We identified the liver X receptor element responsible for activation of the rat apoE promoter by FGF-1 located between –450 and –320 bp, and the direct repeat 4 (DR4) element in this region (–448 to –433 bp) was responsible for the activation. Chromatin immunoprecipitation analysis supported that FGF-1 enhanced association of LXR with the rat apoE promoter. FGF-1 partially activated the apoE promoter even in the presence of an MEK inhibitor that inhibits the FGF-1-mediated enhancement of cholesterol biosynthesis. On the other hand, FGF-1 induced production of 25-hydroxycholesterol by MEK/ERK as an sterol regulatory element-dependent reaction besides cholesterol biosynthesis. We concluded that FGF-1-induced apoE expression in astrocytes depends on LXR being mediated by both LXR expression and an LXR ligand biosynthesis.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility