Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by J Driver
Total Records ( 2 ) for J Driver
  P Bentley , J Driver and R.J. Dolan
 

Cholinergic influences on memory are likely to be expressed at several processing stages, including via well-recognized effects of acetylcholine on stimulus processing during encoding. Since previous studies have shown that cholinesterase inhibition enhances visual extrastriate cortex activity during stimulus encoding, especially under attention-demanding tasks, we tested whether this effect correlates with improved subsequent memory. In a within-subject physostigmine versus placebo design, we measured brain activity with functional magnetic resonance imaging while healthy and mild Alzheimer's disease subjects performed superficial and deep encoding tasks on face (and building) visual stimuli. We explored regions in which physostigmine modulation of face-selective neural responses correlated with physostigmine effects on subsequent recognition performance. In healthy subjects physostigmine led to enhanced later recognition for deep- versus superficially-encoded faces, which correlated across subjects with a physostigmine-induced enhancement of face-selective responses in right fusiform cortex during deep- versus superficial-encoding tasks. In contrast, the Alzheimer's disease group showed neither a depth of processing effect nor restoration of this with physostigmine. Instead, patients showed a task-independent improvement in confident memory with physostigmine, an effect that correlated with enhancements in face-selective (but task-independent) responses in bilateral fusiform cortices. Our results indicate that one mechanism by which cholinesterase inhibitors can improve memory is by enhancing extrastriate cortex stimulus selectivity at encoding, in a manner that for healthy people but not in Alzheimer's disease is dependent upon depth of processing.

  L Garrido , N Furl , B Draganski , N Weiskopf , J Stevens , G. C. Y Tan , J Driver , R. J Dolan and B. Duchaine
 

Individuals with developmental prosopagnosia exhibit severe and lasting difficulties in recognizing faces despite the absence of apparent brain abnormalities. We used voxel-based morphometry to investigate whether developmental prosopagnosics show subtle neuroanatomical differences from controls. An analysis based on segmentation of T1-weighted images from 17 developmental prosopagnosics and 18 matched controls revealed that they had reduced grey matter volume in the right anterior inferior temporal lobe and in the superior temporal sulcus/middle temporal gyrus bilaterally. In addition, a voxel-based morphometry analysis based on the segmentation of magnetization transfer parameter maps showed that developmental prosopagnosics also had reduced grey matter volume in the right middle fusiform gyrus and the inferior temporal gyrus. Multiple regression analyses relating three distinct behavioural component scores, derived from a principal component analysis, to grey matter volume revealed an association between a component related to facial identity and grey matter volume in the left superior temporal sulcus/middle temporal gyrus plus the right middle fusiform gyrus/inferior temporal gyrus. Grey matter volume in the lateral occipital cortex was associated with component scores related to object recognition tasks. Our results demonstrate that developmental prosopagnosics have reduced grey matter volume in several regions known to respond selectively to faces and provide new evidence that integrity of these areas relates to face recognition ability.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility