Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Ibrahim H. Mustafa
Total Records ( 2 ) for Ibrahim H. Mustafa
  Ibrahim H. Mustafa , G. Ibrahim , Ali Elkamel and A.H. Elahwany
  Problem Statement: The activated sludge system needs to improve the operational performance and to achieve more effective control. To realize this, a better quantitative understanding of the biofloc characteristics is required. The objectives of this study were to: (i) Study the biofloc characteristics from kinetics-mass transfer interaction point of view by quantification of the weight of the aerobic portion of the activated sludge floc to the total floc weight. (ii) Study the effect of bulk concentrations of oxygen and nitrates, power input and substrates diffusivity on the portion aerobic portion of the floc. Approach: An appropriate mathematical model based on heterogeneous modeling is developed for activated sludge flocs. The model was taking into account three growth processes: Carbon oxidation, nitrification and de-nitrification in terms of four components: substrate, nitrate, ammonia, and oxygen. The model accounts for the internal and external mass transfer limitations and relates the external mass transfer resistance with power input. The floc model equations were two- point boundary value differential equations. Therefore a central finite difference method is employed. Results: The percentage aerobic portion increased with increasing with oxygen bulk concentrations and power input and decreases when the bulk concentration of ammonia and substrate increases. Both will compete to consume the internal oxygen by autotrophic and heterotrophic bacteria through aerobic growth processes. The biofloc activity through the profiles was either totally active or partially active. The totally active biofloc is either totally aerobic or aerobic and anoxic together. Conclusions: The heterogeneous floc model was able to describe the biofloc characteristics and reflects the real phenomena existing in the activated sludge processes.
  Ibrahim H. Mustafa , G. Ibrahim , Ali Elkamel and A.H. Elahwany
  Problem Statement: The activated sludge system is a complex dynamic process and must account for a large number of reactions between large numbers of components. There is necessity for simulation models which describe the dynamic behavior of the activated sludge process. The application of the models in most treatment plants is limited due to lack of appropriate data acquisition and parameters identification studies. To realize this, an improvement of the operating strategies of Waste-Water Treatment Plants (WWTP) is required. The objectives of this study were to: (i) To build a process model considering mass transfer limitations and simulate an existing plant (Helwan WWTP) and validate the results using data from another existing plant with (Zenine WWTP). (ii) To adjust the model kinetic parameters of the biochemical reactions under the effect of mass transfer conditions to be prepared for simulation purposes. (iii) Study the effect of the operating conditions on the removal efficiency of both substrate and ammonia. Approach: A process model of the process was built considering mass transfer limitations and the three growth processes: Carbon oxidation, nitrification and denitrification. Helwan WWTP was used in order to extract the suitable stoichiometric and kinetic parameters to be used for the simulation. Helwan WWTP was used through the simulation results of the substrate (BOD) and ammonia. Egyptian Zenine WWTP was used for the testing and validation of the process model through predicting the response of substrate. Results: The average error of the removal efficiency in Helwan WWTP reached 3.3% for the substrate and 12.5% for the ammonia while the average error of the removal efficiency in Zenine WWTP of substrate reached 4.6%. The effects of recycle ratio, flow rate and influent substrate concentrations on the removal efficiency of the aeration tank were studied. It was found that the removal efficiency of substrate and ammonia was increased by increasing the recycle ratio, influent substrate concentrations and also increased by decreasing influent flow rates. It was found also that the sludge age increased by increasing the recycle ratio and decreased by decreasing the influent flow rates. Conclusion: The heterogeneous process model was able to describe the characteristics and reflects the real phenomena existing in activated sludge processes.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility