Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by I. I Wistuba
Total Records ( 2 ) for I. I Wistuba
  H Kadara , L Lacroix , C Behrens , L Solis , X Gu , J. J Lee , E Tahara , D Lotan , W. K Hong , I. I Wistuba and R. Lotan
 

Lung cancer continues to be a major deadly malignancy. The mortality of this disease could be reduced by improving the ability to predict cancer patients' survival. We hypothesized that genes differentially expressed among cells constituting an in vitro human lung carcinogenesis model consisting of normal, immortalized, transformed, and tumorigenic bronchial epithelial cells are relevant to the clinical outcome of non–small cell lung cancer (NSCLC). Multidimensional scaling, microarray, and functional pathways analyses of the transcriptomes of the above cells were done and combined with integrative genomics to incorporate the microarray data with published NSCLC data sets. Up-regulated (n = 301) and down-regulated genes (n = 358) displayed expression level variation across the in vitro model with progressive changes in cancer-related molecular functions. A subset of these genes (n = 584) separated lung adenocarcinoma clinical samples (n = 361) into two clusters with significant survival differences. Six genes, UBE2C, TPX2, MCM2, MCM6, FEN1, and SFN, selected by functional array analysis, were also effective in prognosis. The mRNA and protein levels of one these genes—UBE2C—were significantly up-regulated in NSCLC tissue relative to normal lung and increased progressively in lung lesions. Moreover, stage I NSCLC patients with positive UBE2C expression exhibited significantly poorer overall and progression-free survival than patients with negative expression. Our studies with this in vitro model have lead to the identification of a robust six-gene signature, which may be valuable for predicting the survival of lung adenocarcinoma patients. Moreover, one of those genes, UBE2C, seems to be a powerful biomarker for NSCLC survival prediction.

  E. S Kim , W. K Hong , J. J Lee , L Mao , R. C Morice , D. D Liu , C. A Jimenez , G. A Eapen , R Lotan , X Tang , R. A Newman , I. I Wistuba and J. M. Kurie
 

Non–small cell lung cancer is the primary cause of cancer-related death in Western countries. One important approach taken to address this problem is the development of effective chemoprevention strategies. In this study, we examined whether the cyclooxygenase-2 inhibitor celecoxib, as evidenced by decreased cell proliferation, is biologically active in the bronchial epithelium of current and former smokers. Current or former smokers with at least a 20 pack-year (pack-year = number of packs of cigarettes per day times number of years smoked) smoking history were randomized into one of four treatment arms (3-month intervals of celecoxib then placebo, celecoxib then celecoxib, placebo then celecoxib, or placebo then placebo) and underwent bronchoscopies with biopsies at baseline, 3 months, and 6 months. The 204 patients were primarily (79.4%) current smokers: 81 received either low-dose celecoxib or placebo and 123 received either high-dose celecoxib or placebo. Celecoxib was originally administered orally at 200 mg twice daily and the protocol subsequently increased the dose to 400 mg twice daily. The primary end point was change in Ki-67 labeling (from baseline to 3 months) in bronchial epithelium. No cardiac toxicities were observed in the participants. Although the effect of low-dose treatment was not significant, high-dose celecoxib decreased Ki-67 labeling by 3.85% in former smokers and by 1.10% in current smokers—a significantly greater reduction (P = 0.02) than that seen with placebo after adjusting for metaplasia and smoking status. A 3- to 6-month celecoxib regimen proved safe to administer. Celecoxib (400 mg twice daily) was biologically active in the bronchial epithelium of current and former smokers; additional studies on the efficacy of celecoxib in non–small cell lung cancer chemoprevention may be warranted. Cancer Prev Res; 3(2); 148–59

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility