Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Harris Goldstein
Total Records ( 3 ) for Harris Goldstein
  Aviva Joseph , Jian Hua Zheng , Antonia Follenzi , Teresa DiLorenzo , Kaori Sango , Jaime Hyman , Ken Chen , Alicja Piechocka-Trocha , Christian Brander , Erik Hooijberg , Dario A. Vignali , Bruce D. Walker and Harris Goldstein
  The human immunodeficiency virus type 1 (HIV-1)-specific CD8 cytotoxic T-lymphocyte (CTL) response plays a critical role in controlling HIV-1 replication. Augmenting this response should enhance control of HIV-1 replication and stabilize or improve the clinical course of the disease. Although cytomegalovirus (CMV) or Epstein-Barr virus (EBV) infection in immunocompromised patients can be treated by adoptive transfer of ex vivo-expanded CMV- or EBV-specific CTLs, adoptive transfer of ex vivo-expanded, autologous HIV-1-specific CTLs had minimal effects on HIV-1 replication, likely a consequence of the inherently compromised qualitative function of HIV-1-specific CTLs derived from HIV-1-infected individuals. We hypothesized that this limitation could be circumvented by using as an alternative source of HIV-1-specific CTLs, autologous peripheral CD8+ T lymphocytes whose antigen specificity is redirected by transduction with lentiviral vectors encoding HIV-1-specific T-cell receptor (TCR) α and β chains, an approach used successfully in cancer therapy. To efficiently convert peripheral CD8 lymphocytes into HIV-1-specific CTLs that potently suppress in vivo HIV-1 replication, we constructed lentiviral vectors encoding the HIV-1-specific TCR α and TCR β chains cloned from a CTL clone specific for an HIV Gag epitope, SL9, as a single transcript linked with a self-cleaving peptide. We demonstrated that transduction with this lentiviral vector efficiently converted primary human CD8 lymphocytes into HIV-1-specific CTLs with potent in vitro and in vivo HIV-1-specific activity. Using lentiviral vectors encoding an HIV-1-specific TCR to transform peripheral CD8 lymphocytes into HIV-1-specific CTLs with defined specificities represents a new immunotherapeutic approach to augment the HIV-1-specific immunity of infected patients.
  Jinglin Sun , Jian Hua Zheng , Mengliang Zhao , Sunhee Lee and Harris Goldstein
  Inflammatory mediators and viral products produced by human immunodeficiency virus (HIV)-infected microglia and astrocytes perturb the function and viability of adjacent uninfected neuronal and glial cells and contribute to the pathogenesis of HIV-associated neurocognitive disorders (HAND). In vivo exposure to lipopolysaccharide (LPS) activates parenchymal microglia and astrocytes and induces cytokine and chemokine production in the brain. HIV-infected individuals display increased circulating LPS levels due to microbial translocation across a compromised mucosa barrier. We hypothesized that HIV-infected microglia and astrocytes display increased sensitivity to the proinflammatory effects of LPS, and this combines with the increased levels of systemic LPS in HIV-infected individuals to contribute to the development of HAND. To examine this possibility, we determined the in vivo responsiveness of HIV-infected microglia and astrocytes to LPS using our mouse model, JR-CSF/human cyclin T1 (JR-CSF/hu-cycT1) mice, which are transgenic for both an integrated full-length infectious HIV type 1 (HIV-1) provirus derived from the primary R5-tropic clinical isolate HIV-1JR-CSF regulated by the endogenous HIV-1 long terminal repeat and the hu-cycT1 gene under the control of a CD4 promoter. In the current report, we demonstrated that in vivo-administered LPS more potently activated JR-CSF/hu-cycT1 mouse microglia and astrocytes and induced a significantly higher degree of monocyte chemoattractant protein production by JR-CSF/hu-cycT1 astrocytes compared to that of the in vivo LPS response of control littermate mouse microglia and astrocytes. These results indicate that HIV infection increases the sensitivity of microglia and astrocytes to inflammatory stimulation and support the use of these mice as a model to investigate various aspects of the in vivo mechanism of HIV-induced neuronal dysfunction.
  Hongwei Wang , Jinglin Sun and Harris Goldstein
  Human immunodeficiency virus type 1 (HIV-1), introduced into the brain by HIV-1-infected monocytes which migrate across the blood-brain barrier (BBB), infects resident macrophages and microglia and initiates a process that causes HIV-1-associated neurocognitive disorders. The mechanism by which HIV-1 infection circumvents the BBB-restricted passage of systemic leukocytes into the brain and disrupts the integrity of the BBB is not known. Circulating lipopolysaccharide (LPS), which can compromise the integrity of the BBB, is significantly increased in HIV-1-infected individuals. We hypothesized that HIV-1 infection increases monocyte capacity to migrate across the BBB, which is further facilitated by a compromise of BBB integrity mediated by the increased systemic LPS levels present in HIV-1-infected individuals. To investigate this possibility, we examined the in vivo BBB migration of monocytes derived from our novel mouse model, JR-CSF/EYFP mice, which are transgenic for both a long terminal repeat-regulated full-length infectious HIV-1 provirus and ROSA-26-regulated enhanced yellow fluorescent protein. We demonstrated that JR-CSF/EYFP mouse monocytes displayed an increased capacity to enter the brain by crossing either an intact BBB or a BBB whose integrity was partially compromised by systemic LPS. We also demonstrated that the JR-CSF mouse BBB was more susceptible to disruption by systemic LPS than the control wild-type mouse BBB. These results demonstrated that HIV-1 infection increased the ability of monocytes to enter the brain and increased the sensitivity of the BBB to disruption by systemic LPS, which is elevated in HIV-1-infected individuals. These mice represent a new in vivo system for studying the mechanism by which HIV-1-infected monocytes migrate into the brain.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility