Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by H. von Boehmer
Total Records ( 2 ) for H. von Boehmer
  J Nolting , C Daniel , S Reuter , C Stuelten , P Li , H Sucov , B. G Kim , J. J Letterio , K Kretschmer , H. J Kim and H. von Boehmer
 

It has been reported that retinoic acid (RA) enhances regulatory T (T reg) cell conversion by inhibiting the secretion of cytokines that interfere with conversion. This report shows that these conclusions provide a partial explanation at best. First, RA not only interfered with cytokine secretion but also with the ability of these cytokines to inhibit T reg cell conversion of naive T cells. Furthermore, RA enhanced conversion even in the absence of inhibitory cytokines. The latter effect depended on the RA receptor (RAR) but did not require Smad3, despite the fact that RA enhanced Smad3 expression. The RAR1 isoform was not essential for RA-dependent enhancement of transforming growth factor β–driven conversion, suggesting that conversion can also be mediated by RAR2. Interleukin (IL)-6 strongly reduced RAR expression levels such that a deficiency of the predominant RAR1 isoform leaves too little RAR2 for RA to inhibit the generation of Th17 cells in the presence of IL-6.

  M Merkenschlager and H. von Boehmer
 

Expression of the regulatory T (T reg) cell–associated transcription factor Foxp3 can be induced by signals from the T cell receptor (TCR), interleukin-2 (IL-2), and transforming growth factor (TGF)-β. These signals are integrated by a network involving phosphatidylinositol 3 kinase (PI3K), protein kinase B (PKB; here referred to as Akt), and the mammalian target of rapamycin (mTOR). New studies show that the Foxo proteins Foxo1 and Foxo3a, which are inactivated by Akt, drive Foxp3 expression. These studies therefore explain the negative regulation of Foxp3 by PI3K signaling, and add Foxo proteins to the growing list of nuclear factors capable of modulating Foxp3 expression.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility