Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by H. Wang
Total Records ( 14 ) for H. Wang
  Y Min , W Xu , D Liu , S Shen , Y Lu , L Zhang and H. Wang
 

Dendritic cells (DCs) are important for the initiation of the adaptive immune response against Mycobacterium tuberculosis. Autophagy is an innate and adaptive defense mechanism and important for the control of M. tuberculosis. However, the role of autophagy in the adaptive immune response against M. tuberculosis remains to be determined. In the present study, we studied the effects of autophagy on the maturation of DCs infected with Bacillus Calmette–Guérin (BCG). The phenotype and function of the DCs were assessed by measuring the expression of CD86 and HLA-DR and the secretion of IL-10 and IL-6. Autophagy was evaluated by the change in LC3II, a molecular marker for autophagy. Following stimulation of autophagy, DCs that were matured in the presence of BCG showed enhanced expression of CD86 and HLA-DR and increased IL-6 production. The expression of LC3II was increased after the stimulation of autophagy. These results demonstrated that autophagy might result in the increased maturation of BCG-infected DCs, suggesting that autophagy could contribute to an enhanced adaptive immune response against M. tuberculosis.

  Y. Liua, X. Wang , H. Wang and Z. Li
  This paper reports the result of an investigation into the effect of electric and mechanical loads on the morphological evolution of a void in piezoelectric materials based on a model for the morphological evolution of a void, the thermodynamics potential and energy principle. Thus, the path and the bifurcation condition of the morphological evolution of the void in piezoelectric materials are described, which gives some insight into the reliability of piezoelectric films under electric and mechanical loads.
  H. D Bondell , B. J Reich and H. Wang
 

Since quantile regression curves are estimated individually, the quantile curves can cross, leading to an invalid distribution for the response. A simple constrained version of quantile regression is proposed to avoid the crossing problem for both linear and nonparametric quantile curves. A simulation study and a reanalysis of tropical cyclone intensity data shows the usefulness of the procedure. Asymptotic properties of the estimator are equivalent to the typical approach under standard conditions, and the proposed estimator reduces to the classical one if there is no crossing. The performance of the constrained estimator has shown significant improvement by adding smoothing and stability across the quantile levels.

  H. Wang , G.N. Flerchinger , R. Lemke , K. Brandt , T. Goddard and C. Sprout
  The Decision Support System for Agrotechnology Transfer-Cropping System Model (DSSAT-CSM) is a widely used modeling package that often simulates wheat yield and biomass well. However, some previous studies reported that its simulation on soil moisture was not always satisfactory. On the other hand, the Simultaneous Heat and Water (SHAW) model, a more sophisticated, hourly time step soil microclimate model, needs inputs of plant canopy development over time, which are difficult to measure in the field especially for a long-term period (longer than a year). The SHAW model also needs information on surface residue, but treats them as constants. In reality, however, surface residue changes continuously under the effect of tillage, rotation and environment. We therefore proposed to use DSSAT-CSM to simulate dynamics of plant growth and soil surface residue for input into SHAW, so as to predict soil water dynamics. This approach was tested using three conventionally tilled wheat rotations (continuous wheat, wheat-fallow and wheat-wheat-fallow) of a long-term cropping systems study located on a Thin Black Chernozemic clay loam near Three Hills, Alberta, Canada. Results showed that DSSAT-CSM often overestimated the drying of the surface layers in wheat rotations, but consistently overestimated soil moisture in the deep soil. This is likely due to the underestimation of root water extraction despite model predictions that the root system reached 80 cm. Among the eight growth/residue parameters simulated by DSSAT-CSM, root depth, leaf area index and residue thickness are the most influential characteristics on the simulation of soil moisture by SHAW. The SHAW model using DSSAT-CSM-simulated information significantly improved prediction of soil moisture at different depths and total soil water at 0-120 cm in all rotations with different phases compared with that simulated by DSSAT-CSM.
  J Ding , G He , W Gong , W Wen , W Sun , B Ning , S Huang , K Wu , C Huang , M Wu , W Xie and H. Wang
 

Frequent exposure to nickel compounds has been considered as one of the potential causes of human lung cancer. However, the molecular mechanism of nickel-induced lung carcinogenesis remains obscure. In the current study, slight S-phase increase, significant G2/M cell cycle arrest, and proliferation blockage were observed in human bronchial epithelial cells (Beas-2B) upon nickel exposure. Moreover, the induction of cyclin D1 and cyclin E by nickel was shown for the first time in human pulmonary cells, which may be involved in nickel-triggered G1/S transition and cell transformation. In addition, we verified that hypoxia-inducible factor-1, an important transcription factor of nickel response, was not required for the cyclin D1 or cyclin E induction. The role of p53 in nickel-induced G2/M arrest was excluded, respecting that its protein level, ser15 phosphorylation, and transcriptional activity were not changed in nickel response. Further study revealed that cyclin A was not activated in nickel response, and cyclin B1, which not only promotes G2/M transition but also prevents M-phase exit of cells if not degraded in time, was up-regulated by nickel through a manner independent of hypoxia-inducible factor. More importantly, our results verified that overexpressed cyclin B1, veiling the effect of cyclin D1 or cyclin E, mediated nickel-caused M-phase blockage and cell growth inhibition, which may render pulmonary cells more sensitive to DNA damage and facilitates cancer initiation. These results will not only deepen our understanding of the molecular mechanism involved in nickel carcinogenecity, but also lead to the further study on chemoprevention of nickel-associated human cancer. (Cancer Epidemiol Biomarkers Prev 2009;18(6):1720–9)

  J Yin , U Vogel , Y Ma , R Qi and H. Wang
 

DNA repair genes have been proposed as candidate cancer susceptibility genes. The excision repair cross-complementing rodent repair deficiency, complementation group 2 (ERCC2)/xeroderma pigmentosum complementary group D (XPD) protein is considered to be a key enzyme in nucleotide excision repair (NER) pathway. To elucidate whether common ERCC2 variants are associated with lung cancer susceptibility, we conducted a case–control study consisting of 339 cases with primary lung cancer and 358 controls matched on age, gender and ethnicity in a Chinese population. Six haplotype tagging single-nucleotide polymorphisms (htSNPs) (rs238403, rs50871, rs3916840, rs238415, rs3916874 and rs1799787) from HapMap database were analyzed, which provide an almost complete coverage of the genetic variations in the ERCC2 gene. Although none of the six htSNPs was individually associated with lung cancer risk, we found that two ERCC2 haplotypes were associated with risk of lung cancer. Haplotype 4 defined by rs238403T-rs50871T-rs3916840C-rs238415C-rs3916874G-rs1799787C and haplotype 7 defined by rs238403C-rs50871G-rs3916840C-rs238415C-rs3916874G-rs1799787C were strongly associated with an increased risk of lung cancer [odds ratio, OR (95% confidence interval, CI) = 2.62 (1.53–4.50), P = 0.0003 for hap4; OR (95% CI) = 3.01 (1.36–6.63), P = 0.004 for hap7]. Furthermore, diplotype analyses also strengthened the significant associations of risk haplotype 4 [OR (95% CI) = 3.56 (2.12–5.87), P < 0.001] or risk haplotype 7 [OR (95% CI) = 3.38 (1.75–6.55), P < 0.001] and lung cancer. Analysis of linkage disequilibrium (LD) also confirmed that considerable LD exists between the pairs of the six htSNPs within ERCC2. These results suggested that the risk subhaplotypes cosegregate with one or more biologically functional polymorphisms. Our results provide evidence to support a role for ERCC2 in lung cancer development in a Chinese population.

  D Zhang , X Jiang , P Fang , Y Yan , J Song , S Gupta , A. I Schafer , W Durante , W. D Kruger , X Yang and H. Wang
 

Background— Hyperhomocysteinemia (HHcy) is an independent risk factor for cardiovascular disease. Monocytes display inflammatory and resident subsets and commit to specific functions in atherogenesis. In this study, we examined the hypothesis that HHcy modulates monocyte heterogeneity and leads to atherosclerosis.

Methods and Results— We established a novel atherosclerosis-susceptible mouse model with both severe HHcy and hypercholesterolemia in which the mouse cystathionine β-synthase (CBS) and apolipoprotein E (apoE) genes are deficient and an inducible human CBS transgene is introduced to circumvent the neonatal lethality of the CBS deficiency (Tg-hCBS apoE–/– Cbs–/– mice). Severe HHcy accelerated atherosclerosis and inflammatory monocyte/macrophage accumulation in lesions and increased plasma tumor necrosis factor- and monocyte chemoattractant protein-1 levels in Tg-hCBS apoE–/– Cbs–/– mice fed a high-fat diet. Furthermore, we characterized monocyte heterogeneity in Tg-hCBS apoE–/– Cbs–/– mice and another severe HHcy mouse model (Tg-S466L Cbs–/–) with a disease-relevant mutation (Tg-S466L) that lacks hyperlipidemia. HHcy increased monocyte population and selective expansion of inflammatory Ly-6Chi and Ly-6Cmid monocyte subsets in blood, spleen, and bone marrow of Tg-S466L Cbs–/– and Tg-hCBS apoE–/– Cbs–/– mice. These changes were exacerbated in Tg-S466L Cbs–/– mice with aging. Addition of l-homocysteine (100 to 500 µmol/L), but not l-cysteine, maintained the Ly-6Chi subset and induced the Ly-6Cmid subset in cultured mouse primary splenocytes. Homocysteine-induced differentiation of the Ly-6Cmid subset was prevented by catalase plus superoxide dismutase and the NAD(P)H oxidase inhibitor apocynin.

Conclusion— HHcy promotes differentiation of inflammatory monocyte subsets and their accumulation in atherosclerotic lesions via NAD(P)H oxidase–mediated oxidant stress.

  C Wang , K. C Chang , G Somers , D Virshup , B. T Ang , C Tang , F Yu and H. Wang
  Cheng Wang, Kai Chen Chang, Gregory Somers, David Virshup, Beng Ti Ang, Carol Tang, Fengwei Yu, and Hongyan Wang

Drosophila larval brain neural stem cells, also known as neuroblasts, divide asymmetrically to generate a self-renewing neuroblast and a ganglion mother cell (GMC) that divides terminally to produce two differentiated neurons or glia. Failure of asymmetric cell division can result in hyperproliferation of neuroblasts, a phenotype resembling brain tumors. Here we have identified Drosophila Protein phosphatase 2A (PP2A) as a brain tumor-suppressor that can inhibit self-renewal of neuroblasts. Supernumerary larval brain neuroblasts are generated at the expense of differentiated neurons in PP2A mutants. Neuroblast overgrowth was observed in both dorsomedial (DM)/posterior Asense-negative (PAN) neuroblast lineages and non-DM neuroblast lineages. The PP2A heterotrimeric complex, composed of the catalytic subunit (Mts), scaffold subunit (PP2A-29B) and a B-regulatory subunit (Tws), is required for the asymmetric cell division of neuroblasts. The PP2A complex regulates asymmetric localization of Numb, Pon and Atypical protein kinase C, as well as proper mitotic spindle orientation. Interestingly, PP2A and Polo kinase enhance Numb and Pon phosphorylation. PP2A, like Polo, acts to prevent excess neuroblast self-renewal...

  L. Ou-Yang , H. Wang and Y. Tang
  This study proposes a mathematical model that uses the traction coefficient as an evaluation index for predicting the traction trafficability of a tire with low inflation pressure while rolling on a sandy beach. Employing sand taken from the sandy beach on the Huli Mountain in Xiamen and a 400/60-15.5R14 tire, we performed a tire sand trough orthogonal experiment using different tire pressures, loads and slip rates. The experimental results were found to be consistent with the predictions of the mathematical model and the optimum tire pressure was determined. The numerical and experimental results provide a reliable basis for designing a beach cleaner.
  Y Wang , M Zhang , C Moon , Q Hu , B Wang , G Martin , Z Sun and H. Wang
 

FE65 is expressed predominantly in the brain and interacts with the C-terminal domain of β-amyloid precursor protein (APP). We examined hippocampus-dependent memory and in vivo long-term potentiation (LTP) at the CA1 synapses with isoform-specific FE65 knockout (p97FE65–/–) mice. When examined using the Morris water maze, p97FE65–/– mice were impaired for the hidden platform task but showed normal performance in the probe test. To further discriminate the role of FE65 in acquisition and memory consolidation, we examined p97FE65–/– mice with temporal dissociative passive avoidance (TDPA) and contextual fear conditioning (CFC). p97FE65–/– mice showed impaired short-term memory for both TDPA and CFC when tested 10 min after training. After multiple TDPA training sessions, the crossover latency of some p97FE65–/– mice reached the cutoff value, but it significantly decayed in 8 d. At the Schaffer collateral-CA1 synapses, p97FE65–/– mice showed defective early-phase LTP (E-LTP). These results demonstrate novel roles of FE65 in synaptic plasticity, acquisition, and retention for certain forms of memory formation.

  Y. M. Hu , H. Wang , W. C. Ye and L. Qian
  One new triterpenoid, 3β, 16β, 23, 28-tetrahydroxy oleana-11, 13(18)-dien-3-O-β-D-glucopyranosyl(1 → 3) [β-D-glucopyranosyl(1 → 2)]-β-D-fucopyranoside (1), together with two known flavonoids, were isolated from Stellaria media (L.) Cyr. The structure elucidation of the new compound was primarily based on HREIMS, EIMS, UV, IR, 1D- and 2D-NMR analyses, including COSY, HMQC and HMBC correlations.
  Y. M. Hu , Z. L. Yang , H. Wang and W. C. Ye
  A new sesquiterpeniod, 6α, 7α, 10α-trihydroxyisoducane (1), together with two known sesquiterpenoids, oplodiol (2) and oplopanone (3), were isolated from the chloroform extract of the rhizomes of Homalomena occulta. Their structures were elucidated by 1D and 2D NMR spectral interpretation.
  X.L. Li , X.M. Zou , P. Gao , Y.L. Li , H. Wang and X.W. Chen
 

Objective: This study was designed to evaluate the role of nitric oxide (NO) in ischemia-reperfusion injury (IRI) and acute rejection (AR) in rat intestinal transplantation, using administration of the NO inhibitor NG-nitro-L-arginine methyl ester (L-NAME).

Materials and Methods: Rats that underwent orthotopic allogeneic intestinal transplantation were assigned to 2 groups. In the normal allograft group (Wistar to Sprague-Dawley rats), L-NAME 0 mg/kg/d (group 1-1), 4 mg/kg/d (group 1-2), 8 mg/kg/d (group 1-3), or 12 mg/kg/d (group 1-4) was injected intraperitoneally. In the high responder allograft group (Dark Agouti to Lewis rats), L-NAME 0 mg/kg/d (group 2-1) or 8 mg/kg/d (group 2-2) was injected intraperitoneally. Survival times were observed and maltose absorption tests performed as well as light microscopic examination of the grafts.

Results: The mean survival time of group 1-3 was significantly prolonged compared with group 1-1 (P < .01). In group 2, the survival time of group 2-2 was significantly prolonged compared with group 2-1 (P < .01). Histological changes showed IRI was attenuated in group 1–2 compared with group 1-1, whereas it was aggravated in groups 1-3 and 1-4. Treatment with L-NAME (8 mg/kg/d) attenuated the graft damage of AR in groups 1 and 2. Maltose absorption tests showed that inhibition of NO impaired maltose absorption.

Conclusion: This study suggested that NO plays a dual role as both a cytotoxic and a cytoprotective factor in IRI, and may serve as a kind of cytotoxic medium in AR in rat intestinal allotransplantation.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility