Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by H. Alshiyab
Total Records ( 3 ) for H. Alshiyab
  H. Alshiyab , M.S. Kalil , A.A. Hamid and W.M.W. Yusoff
  The aim of this study was to investigate the influence of some environmental factors on bacterial metabolism. Fermentative hydrogen production by C. acetobutylicum, using glucose as the substrate. The effect of initial pH (4-8), inoculum size (1-20% (v/v)) and glucose concentration (1-30 g L-1) on hydrogen production were studied. The optimum cultivation temperature for hydrogen production was at 30 °C. The results show that substrate concentration and inoculum size resulted in hydrogen yield (YP/S) of 391 mL g-1 glucose utilized with maximum hydrogen productivity of 77.5 mL/L/h. Higher substrate concentration or inoculum size adversely affects hydrogen production, which decreases hydrogen yield by 15% to 334 mL g-1 glucose utilized when 30% (v/v) inoculum size was used. The use of 30 g L-1 substrate concentration resulted in a 75% decrease to 97 mL g-1 glucose supplied. Concluded that proper Xo/So enhanced the hydrogen production.
  H. Alshiyab , M.S. Kalil , A.A. Hamid and W.M. Wan Yusoff
  The objective of this study is to investigate the effect of salts addition to fermentation medium on hydrogen production, under anaerobic batch culture system. In this study, batch experiments were conducted to investigate the inhibitory effect of both NaCl and sodium acetate on hydrogen production. The optimum pH and temperature for hydrogen production were at initial pH of 7.0 and 30°C. Enhanced production of hydrogen, using glucose as substrate was achieved. In the absence of Sodium Chloride and Sodium Acetate enhanced hydrogen yield (YP/S) from 350 mL g-1 glucose utilized to 391 mL g-1 glucose utilized with maximum hydrogen productivity of 77.5 ml/L/h. Results also show that sodium chloride and sodium acetate in the medium adversely affect growth. Hydrogen yield per biomass (YP/X) of 254 ml/L/g, biomass per substrate utilized (YX/S) of 0.268 and (YH2/S) of 0.0349. The results suggested that Sodium at any concentration resulted to inhibit the bacterial productivity of hydrogen.
  H. Alshiyab , M.S. Kalil , A.A. Hamid and W.M.W. Yusoff
  The effect of removal of resultant gas resulted in enhancement of the H2 yield. The technique of CO2 scavenging resulted in H2 yield being improved from 408 mL g-1 to reach the maximum of 422 mL g-1. The highest hydrogen productivity of 87.9 ml L-1 h-1 was obtained by CO2 scavenging. Biomass concentration was enhanced to 1.47 g L-1, YP/X of 287 ml g-1 L-1, YX/S of 0.294 and YH2/s of 0.0377 by the use of CO2 scavenging. The results suggested that the presence of the gaseous products in fermentation medium and headspace adversely effect biomass growth and hydrogen production.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility