Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by H Zhou
Total Records ( 10 ) for H Zhou
  X Gong , W Ye , H Zhou , X Ren , Z Li , W Zhou , J Wu , Y Gong , Q Ouyang , X Zhao and X. Zhang
 

Acetylcholinesterase (AChE) expression may be induced during apoptosis in various cell types. Here, we used the C-terminal of AChE to screen the human fetal brain library and found that it interacted with Ran-binding protein in the microtubule-organizing center (RanBPM). This interaction was further confirmed by coimmunoprecipitation analysis. In HEK293T cells, RanBPM and AChE were heterogeneously expressed in the cisplatin-untreated cytoplasmic extracts and in the cisplatin-treated cytoplasmic or nuclear extracts. Our previous studies performed using morphologic methods have shown that AChE translocates from the cytoplasm to the nucleus during apoptosis. Taken together, these results suggest that RanBPM is an AChE-interacting protein that is translocated from the cytoplasm into the nucleus during apoptosis, similar to the translocation observed in case of AChE.

  H Zhou , Y Xiao , R Li , S Hong , S Li , L Wang , R Zeng and K. Liao
 

Adipocyte is not only a central player involved in storage and release of energy, but also in regulation of energy metabolism in other organs via secretion of peptides and proteins. During the pathogenesis of insulin resistance and type 2 diabetes, adipocytes are subjected to the increased levels of insulin, which may have a major impact on the secretion of adipokines. We have undertaken cleavable isotope-coded affinity tag (cICAT) and label-free quantitation approaches to identify and quantify secretory factors that are differentially secreted by 3T3-L1 adipocytes with or without insulin treatment. Combination of cICAT and label-free results, there are 317 proteins predicted or annotated as secretory proteins. Among these secretory proteins, 179 proteins and 53 proteins were significantly up-regulated and down-regulated, respectively. A total of 77 reported adipokines were quantified in our study, such as adiponectin, cathepsin D, cystatin C, resistin, and transferrin. Western blot analysis of these adipokines confirmed the quantitative results from mass spectrometry, and revealed individualized secreting patterns of these proteins by increasing insulin dose. In addition, 240 proteins were newly identified and quantified as secreted proteins from 3T3-L1 adipocytes in our study, most of which were up-regulated upon insulin treatment. Further comprehensive bioinformatics analysis revealed that the secretory proteins in extracellular matrix-receptor interaction pathway and glycan structure degradation pathway were significantly up-regulated by insulin stimulation.

  L Sun , J Li , C Xu , F Yu , H Zhou , L Tang and J. He
 

A device has been invented for protein crystallization by sandwiching the liquid droplet between two surfaces, in which both hydrophilic and hydrophobic surfaces can be used as crystallization substrates. Comparing with the traditional hanging drop method, it can also reduce the evaporation rate of the liquid droplet and provide a stable environment for the crystal growth. In this work, crystal growth experiments for several proteins, especially on the hydrophilic substrate of mica, have shown the positive effect on crystal growth for improving crystallization conditions and the quality of crystals. The features of this new sandwich method and its mechanism have also been discussed.

  W Chen , Y Luo , L Liu , H Zhou , B Xu , X Han , T Shen , Z Liu , Y Lu and S. Huang
 

Cryptotanshinone (CPT), a natural compound isolated from the plant Salvia miltiorrhiza Bunge, is a potential anticancer agent. However, little is known about its anticancer mechanism. Here, we show that CPT inhibited cancer cell proliferation by arresting cells in G1-G0 phase of the cell cycle. This is associated with the inhibition of cyclin D1 expression and retinoblastoma (Rb) protein phosphorylation. Furthermore, we found that CPT inhibited the signaling pathway of the mammalian target of rapamycin (mTOR), a central regulator of cell proliferation. This is evidenced by the findings that CPT inhibited type I insulin-like growth factor I– or 10% fetal bovine serum–stimulated phosphorylation of mTOR, p70 S6 kinase 1, and eukaryotic initiation factor 4E binding protein 1 in a concentration- and time-dependent manner. Expression of constitutively active mTOR conferred resistance to CPT inhibition of cyclin D1 expression and Rb phosphorylation, as well as cell growth. The results suggest that CPT is a novel antiproliferative agent. Cancer Prev Res; 3(8); 1015–25. ©2010 AACR.

  L Zhang , T Deng , X Li , H Liu , H Zhou , J Ma , M Wu , M Zhou , S Shen , Z Niu , W Zhang , L Shi , B Xiang , J Lu , L Wang , D Li , H Tang and G. Li
 

microRNAs (miRNAs) are small non-coding RNAs and have been implicated in the pathology of various diseases, including cancer. Here we report that the miRNA profiles have been changed after knockdown of one of the most important oncogene c-MYC or re-expression of a candidate tumor suppressor gene SPLUNC1 in nasopharyngeal carcinoma (NPC) cells. Both c-MYC knockdown and SPLUNC1 re-expression can down-regulate microRNA-141 (miR-141). miR-141 is up-regulated in NPC specimens in comparison with normal nasopharyngeal epithelium. Inhibition of miR-141 could affect cell cycle, apoptosis, cell growth, migration and invasion in NPC cells. We found that BRD3, UBAP1 and PTEN are potential targets of miR-141, which had been confirmed following luciferase reporter assays and western blotting. BRD3 and UBAP1 are both involved in NPC carcinogenesis as confirmed through our previous studies and PTEN is a crucial tumor suppressor in many tumor types. BRD3 is involved in the regulation of the Rb/E2F pathway. Inhibition of miR-141 could affect some important molecules in the Rb/E2F, JNK2 and AKT pathways. It is well known that carcinogenesis of NPC is involved in the networks of genetic and epigenetic alteration events. We propose that miR-141- and tumor-related genes c-MYC, SPLUNC1, BRD3, UBAP1 and PTEN may constitute a gene–miRNA network to contribute to NPC development.

  W Fang , W Ding , B Wang , H Zhou , H Ouyang , J Ming and C. Jin
 

Protein O-mannosyltransferases (PMTs) initiate O-mannosylation of secretory proteins, which are of fundamental importance in eukaryotes. The human fungal pathogen Aspergillus fumigatus possesses three genes encoding for PMTs, namely, Afpmt1, Afpmt2 and Afpmt4. We have previously shown that lack of AfPmt1 leads to a temperature-sensitive phenotype featured with severe defects in hyphal growth, conidiation, cell wall integrity and morphology at elevated temperatures. In this study, a conditional mutant P2 was constructed by replacing the native promoter of the Afpmt2 with the Aspergillus nidulans alcA promoter. Reduced expression of the Afpmt2 gene led to a lagged germination, retarded hyphal growth, reduced conidiation and defect in cell wall integrity; however, no temperature-sensitive growth was observed. Further analysis revealed that reduced expression of the Afpmt2 caused a failure of the actin re-arrangement. Our results suggest that Afpmt2 gene was required for growth and played a role distinct from that of the Afpmt1 in A. fumigatus.

  N Lai , H Zhou , G. M Saidel , M Wolf , K McCully , L. B Gladden and M. E. Cabrera
 

Noninvasive, continuous measurements in vivo are commonly used to make inferences about mechanisms controlling internal and external respiration during exercise. In particular, the dynamic response of muscle oxygenation (SmO2) measured by near-infrared spectroscopy (NIRS) is assumed to be correlated to that of venous oxygen saturation (SvO2) measured invasively. However, there are situations where the dynamics of SmO2 and SvO2 do not follow the same pattern. A quantitative analysis of venous and muscle oxygenation dynamics during exercise is necessary to explain the links between different patterns observed experimentally. For this purpose, a mathematical model of oxygen transport and utilization that accounts for the relative contribution of hemoglobin (Hb) and myoglobin (Mb) to the NIRS signal was developed. This model includes changes in microvascular composition within skeletal muscle during exercise and integrates experimental data in a consistent and mechanistic manner. Three subjects (age 25.6 ± 0.6 yr) performed square-wave moderate exercise on a cycle ergometer under normoxic and hypoxic conditions while muscle oxygenation (Coxy) and deoxygenation (Cdeoxy) were measured by NIRS. Under normoxia, the oxygenated Hb/Mb concentration (Coxy) drops rapidly at the onset of exercise and then increases monotonically. Under hypoxia, Coxy decreases exponentially to a steady state within ~2 min. In contrast, model simulations of venous oxygen concentration show an exponential decrease under both conditions due to the imbalance between oxygen delivery and consumption at the onset of exercise. Also, model simulations that distinguish the dynamic responses of oxy-and deoxygenated Hb (HbO2, HHb) and Mb (MbO2, HMb) concentrations (Coxy = HbO2 + MbO2; Cdeoxy = HHb + HMb) show that Hb and Mb contributions to the NIRS signal are comparable. Analysis of NIRS signal components during exercise with a mechanistic model of oxygen transport and metabolism indicates that changes in oxygenated Hb and Mb are responsible for different patterns of SmO2 and SvO2 dynamics observed under normoxia and hypoxia.

  Y Li , W Pan , W Xu , N He , X Chen , H Liu , L Darryl Quarles , H Zhou and Z. Xiao
 

Cleidocranial dysplasia (CCD) is an autosomal dominant bone disease in humans caused by haploinsufficiency of the RUNX2 gene. The RUNX2 has two major isoforms derived from P1 and P2 promoters. Over 90 mutations of RUNX2 have been reported associated with CCD. In our study, DNA samples of nine individuals from three unrelated CCD families were collected and screened for all exons of RUNX2 and 2 kb of P1 and P2 promoters. We identified two point mutations in the RUNX2 gene in Case 1, including a nonsense mutation (c.577C>T) that has been reported previously and a silent substitution (c.240G>A). In vitro studies demonstrated that c.577C>T mutation led to truncated RUNX2 protein production and diminished stimulating effects on mouse osteocalcin promoter activity when compared with full-length Runx2-II and Runx2-I isoforms. These results confirm that loss of function RUNX2 mutation (c.577C>T) in Case 1 family is responsible for its CCD phenotype.

  M. C Satterfield , G Song , K. J Kochan , P. K Riggs , R. M Simmons , C. G Elsik , D. L Adelson , F. W Bazer , H Zhou and T. E. Spencer
 

Establishment of pregnancy in ruminants requires blastocyst growth to form an elongated conceptus that produces interferon tau, the pregnancy recognition signal, and initiates implantation. Blastocyst growth and development requires secretions from the uterine endometrium. An early increase in circulating concentrations of progesterone (P4) stimulates blastocyst growth and elongation in ruminants. This study utilized sheep as a model to identify candidate genes and regulatory networks in the endometrium that govern preimplantation blastocyst growth and development. Ewes were treated daily with either P4 or corn oil vehicle from day 1.5 after mating to either day 9 or day 12 of pregnancy when endometrium was obtained by hysterectomy. Microarray analyses revealed many differentially expressed genes in the endometria affected by day of pregnancy and early P4 treatment. In situ hybridization analyses revealed that many differentially expressed genes were expressed in a cell-specific manner within the endometrium. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used to identify functional groups of genes and biological processes in the endometrium that are associated with growth and development of preimplantation blastocysts. Notably, biological processes affected by day of pregnancy and/or early P4 treatment included lipid biosynthesis and metabolism, angiogenesis, transport, extracellular space, defense and inflammatory response, proteolysis, amino acid transport and metabolism, and hormone metabolism. This transcriptomic data provides novel insights into the biology of endometrial function and preimplantation blastocyst growth and development in sheep.

  B. Y Zhang , H Zhou and H. Zhu
 

This paper attempts to explain the credit default swap (CDS) premium, using a novel approach to identify the volatility and jump risks of individual firms from high-frequency equity prices. Our empirical results suggest that the volatility risk alone predicts 48% of the variation in CDS spread levels, whereas the jump risk alone forecasts 19%. After controlling for credit ratings, macroeconomic conditions, and firms' balance sheet information, we can explain 73% of the total variation. We calibrate a Merton-type structural model with stochastic volatility and jumps, which can help to match credit spreads after controlling for the historical default rates. Simulation evidence suggests that the high-frequency-based volatility measures can help to explain the credit spreads, above and beyond what is already captured by the true leverage ratio.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility