Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by H Liu
Total Records ( 13 ) for H Liu
  H Liu , S Li , Y Zhang , Y Yan and Y. Li
 

Glutamate decarboxylase 65 (GAD65) produces -aminobutyric acid, the main inhibitory neurotransmitter in adult mammalian brain. Previous experiments, performed in brain, showed that GAD65 gene possesses two TATA-less promoters, although the significance is unknown. Here, by rapid amplification of cDNA ends method, two distinct GAD65 mRNA isoforms transcribed from two independent clusters of transcription start sites were identified in post-natal rat testis. RT–PCR results revealed that the two mRNA isoforms had distinct expression patterns during post-natal testis maturation, suggesting that GAD65 gene expression was regulated by alternative promoters at the transcription level. By using GAD65-specific antibodies, western blotting analysis showed that the 58-kDa GAD65, N-terminal 69 amino acids truncated form of full-length GAD65 protein, was developmentally expressed during post-natal testis maturation, suggesting that GAD65 gene expression in testis may also be regulated by post-translational processing. Confocal immunofluorescence microscopy revealed that GAD65 protein was presented in Leydig cells of Day 1 testis, primary spermatocytes and spermatids of post-natal of Day 90 testis. The above results suggested that GAD65 gene expression is dynamically regulated at multiple levels during post-natal testis maturation.

  B Xiang , M Yi , L Wang , W Liu , W Zhang , J Ouyang , Y Peng , W Li , M Zhou , H Liu , M Wu , R Wang , X Li and G. Li
 

Oxidored-nitro domain containing protein 1 (NOR1) gene is a novel nitroreductase gene first isolated from nasopharyngeal carcinoma (NPC). It plays an important role in the formation of chemical carcinogen and the carcinogenesis of NPC for its nitrosation function. Overexpression of the wild-type NOR1 gene in nasopharyngeal carcinoma cells is effective to inhibit cell growth and proliferation. In this study, for the first time, we generated a highly specific NOR1 antibody and analyzed NOR1 distribution in the human tissues and NPC biopsies. The results showed that NOR1 protein is predominantly expressed in human nasopharynx and tracheal tissues. Human heart, liver, spleen, stomach, colon, kidney, skeletal muscle, thymus, and pancreas are all deficient of NOR1 protein. More importantly, we performed immunohistochemistry assay of NOR1 protein expression in the NPC tissues, and the result showed that NOR1 protein is frequently down-expressed in NPC. These data shed light on the selectivity of potential physiological functions of NOR1 and provides an indispensable reference to the carcinogenesis process of NPC and to identify or validate tissue-specific drug targets.

  V Ionut , H Liu , V Mooradian , A. V. B Castro , M Kabir , D Stefanovski , D Zheng , E. L Kirkman and R. N. Bergman
 

Human type 2 diabetes mellitus (T2DM) is often characterized by obesity-associated insulin resistance (IR) and β-cell function deficiency. Development of relevant large animal models to study T2DM is important and timely, because most existing models have dramatic reductions in pancreatic function and no associated obesity and IR, features that resemble more T1DM than T2DM. Our goal was to create a canine model of T2DM in which obesity-associated IR occurs first, followed by moderate reduction in β-cell function, leading to mild diabetes or impaired glucose tolerance. Lean dogs (n = 12) received a high-fat diet that increased visceral (52%, P < 0.001) and subcutaneous (130%, P < 0.001) fat and resulted in a 31% reduction in insulin sensitivity (SI) (5.8 ± 0.7 x 10–4 to 4.1 ± 0.5 x 10–4 µU·ml–1·min–1, P < 0.05). Animals then received a single low dose of streptozotocin (STZ; range 30–15 mg/kg). The decrease in β-cell function was dose dependent and resulted in three diabetes models: 1) frank hyperglycemia (high STZ dose); 2) mild T2DM with normal or impaired fasting glucose (FG), 2-h glucose >200 mg/dl during OGTT and 77–93% AIRg reduction (intermediate dose); and 3) prediabetes with normal FG, normal 2-h glucose during OGTT and 17–74% AIRg reduction (low dose). Twelve weeks after STZ, animals without frank diabetes had 58% more body fat, decreased β-cell function (17–93%), and 40% lower SI. We conclude that high-fat feeding and variable-dose STZ in dog result in stable models of obesity, insulin resistance, and 1) overt diabetes, 2) mild T2DM, or 3) impaired glucose tolerance. These models open new avenues for studying the mechanism of compensatory changes that occur in T2DM and for evaluating new therapeutic strategies to prevent progression or to treat overt diabetes.

  K. Y Ho , W Tay , M. C Yeo , H Liu , S. J Yeo , S. L Chia and N. N. Lo
  Background

Multimodal analgesia is advocated for perioperative pain management to reduce opioid use and its associated adverse effects. Serotonin and norepinephrine are involved in the modulation of endogenous analgesic mechanisms via descending inhibitory pain pathways in the brain and spinal cord. An increase in serotonin and norepinephrine may increase inhibition of nociceptive input and improve pain relief. Duloxetine, a selective serotonin and norepinephrine reuptake inhibitor, has demonstrated efficacy in chronic pain conditions such as painful diabetic neuropathy and post-herpetic neuralgia. The objective of the study was to evaluate the efficacy of duloxetine in reducing morphine requirements in patients after knee replacement surgery.

Methods

Fifty patients received either two doses of oral duloxetine 60 mg (2 h before surgery and on first postoperative day) or placebo. All patients received patient-controlled analgesia with morphine for 48 h after operation. Pain and adverse effects were assessed at 0.5, 1, 2, 6, 12, 24, and 48 h after surgery on an 11-point numeric rating scale.

Results

Twenty-three patients in the duloxetine group and 24 patients in the placebo group completed the study. Morphine requirements during the 48 h after surgery were significantly lower in the duloxetine group [19.5 mg, standard deviation (sd) 14.5 mg] compared with the placebo group (30.3 mg, sd 18.1 mg) (P=0.017). There were no statistically significant differences between the groups in pain scores (at rest and on movement) or in adverse effects.

Conclusions

Perioperative administration of duloxetine reduced postoperative morphine requirements during the first 48 h after knee replacement surgery, without significant adverse effects.

  L Zhang , T Deng , X Li , H Liu , H Zhou , J Ma , M Wu , M Zhou , S Shen , Z Niu , W Zhang , L Shi , B Xiang , J Lu , L Wang , D Li , H Tang and G. Li
 

microRNAs (miRNAs) are small non-coding RNAs and have been implicated in the pathology of various diseases, including cancer. Here we report that the miRNA profiles have been changed after knockdown of one of the most important oncogene c-MYC or re-expression of a candidate tumor suppressor gene SPLUNC1 in nasopharyngeal carcinoma (NPC) cells. Both c-MYC knockdown and SPLUNC1 re-expression can down-regulate microRNA-141 (miR-141). miR-141 is up-regulated in NPC specimens in comparison with normal nasopharyngeal epithelium. Inhibition of miR-141 could affect cell cycle, apoptosis, cell growth, migration and invasion in NPC cells. We found that BRD3, UBAP1 and PTEN are potential targets of miR-141, which had been confirmed following luciferase reporter assays and western blotting. BRD3 and UBAP1 are both involved in NPC carcinogenesis as confirmed through our previous studies and PTEN is a crucial tumor suppressor in many tumor types. BRD3 is involved in the regulation of the Rb/E2F pathway. Inhibition of miR-141 could affect some important molecules in the Rb/E2F, JNK2 and AKT pathways. It is well known that carcinogenesis of NPC is involved in the networks of genetic and epigenetic alteration events. We propose that miR-141- and tumor-related genes c-MYC, SPLUNC1, BRD3, UBAP1 and PTEN may constitute a gene–miRNA network to contribute to NPC development.

  M Liu , H Liu and S. C. Dudley
  Rationale:

Pyridine nucleotides regulate the cardiac Na+ current (INa) through generation of reactive oxygen species (ROS).

Objective:

We investigated the source of ROS induced by elevated NADH.

Methods and Results:

In human embryonic kidney (HEK) cells stably expressing the cardiac Na+ channel, the decrease of INa (52±9%; P<0.01) induced by cytosolic NADH application (100 µmol/L) was reversed by mitoTEMPO, rotenone, malonate, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), PK11195, and 4'-chlorodiazepam, a specific scavenger of mitochondrial superoxide and inhibitors of the mitochondrial complex I, complex II, voltage-dependent anion channels, and benzodiazepine receptor, respectively. Anti–mycin A (20 µmol/L), a complex III inhibitor known to generate ROS, decreased INa (51±4%, P<0.01). This effect was blocked by NAD+, forskolin, or rotenone. Inhibitors of complex IV, nitric oxide synthase, the NAD(P)H oxidases, xanthine oxidases, the mitochondrial permeability transition pore, and the mitochondrial ATP-sensitive K+ channel did not change the NADH effect on INa. Analogous results were observed in cardiomyocytes. Rotenone, mitoTEMPO, and 4'-chlorodiazepam also blocked the mutant A280V GPD1-L (glycerol-3-phosphate dehydrogenase 1-like) effect on reducing INa, indicating a role for mitochondria in the Brugada syndrome caused by this mutation. Fluorescent microscopy confirmed mitochondrial ROS generation with elevated NADH and ROS inhibition by NAD+.

Conclusions:

Altering the oxidized to reduced NAD(H) balance can activate mitochondrial ROS production, leading to reduced INa. This signaling cascade may help explain the link between altered metabolism, conduction block, and arrhythmic risk.

  H Liu , L El Zein , M Kruse , R Guinamard , A Beckmann , A Bozio , G Kurtbay , A Megarbane , I Ohmert , G Blaysat , E Villain , O Pongs and P. Bouvagnet
  Background—

Isolated cardiac conduction block is a relatively common condition in young and elderly populations. Genetic predisposing factors have long been suspected because of numerous familial case reports. Deciphering genetic predisposing factors of conduction blocks may give a hint at stratifying conduction block carriers in a more efficient way.

Methods and Results—

One Lebanese family and 2 French families with autosomal dominant isolated cardiac conduction blocks were used for linkage analysis. A maximum combined multipoint lod score of 10.5 was obtained on a genomic interval including more than 300 genes. After screening 12 genes of this interval for mutation, we found a heterozygous missense mutation of the TRPM4 gene in each family (p.Arg164Trp, p.Ala432Thr, and p.Gly844Asp). This gene encodes the TRPM4 channel, a calcium-activated nonselective cation channel of the transient receptor potential melastatin (TRPM) ion channel family. All 3 mutations result in an increased current density. This gain of function is due to an elevated TRPM4 channel density at the cell surface secondary to impaired endocytosis and deregulation of Small Ubiquitin MOdifier conjugation (SUMOylation). Furthermore, we showed by immunohistochemistry that TRPM4 channel signal level is higher in atrial cardiomyocytes than in common ventricular cells, but is highest in Purkinje fibers. Small bundles of highly TRPM4-positive cells were found in the subendocardium and in rare intramural bundles.

Conclusions—

the TRPM4 gene is a causative gene in isolated cardiac conduction disease with mutations resulting in a gain of function and TRPM4 channel being highly expressed in cardiac Purkinje fibers.

  C Zhang , L Fu , J Fu , L Hu , H Yang , T. H Rong , Y Li , H Liu , S. B Fu , Y. X Zeng and X. Y. Guan
 

Purpose: Tumor fibroblasts (TF) have been suggested to play an essential role in the complex process of tumor-stroma interactions and tumorigenesis. The aim of the present study was to investigate the specific role of TF in the esophageal cancer microenvironment.

Experimental Design: An Affymetrix expression microarray was used to compare gene expression profiles between six pairs of TFs and normal fibroblasts from esophageal squamous cell carcinoma (ESCC). Differentially expressed genes were identified, and a subset was evaluated by quantitative real-time PCR and immunohistochemistry.

Results: About 43% (126 of 292) of known deregulated genes in TFs were associated with cell proliferation, extracellular matrix remodeling, and immune response. Up-regulation of fibroblast growth factor receptor 2 (FGFR2), which showed the most significant change, was detected in all six tested TFs compared with their paired normal fibroblasts. A further study found that FGFR2-positive fibroblasts were only observed inside the tumor tissues and not in tumor-surrounding stromal tissues, suggesting that FGFR2 could be used as a TF-specific marker in ESCC. Moreover, the conditioned medium from TFs was found to be able to promote ESCC tumor cell growth, migration, and invasion in vitro.

Conclusions: Our study provides new candidate genes for the esophageal cancer microenvironment. Based on our results, we hypothesize that FGFR2(+)-TFs might provide cancer cells with a suitable microenvironment via secretion of proteins that could promote cancer development and progression through stimulation of cancer cell proliferation, induction of angiogenesis, inhibition of cell adhesion, enhancement of cell mobility, and promotion of the epithelial-mesenchymal transition.

  W Yang , S Lv , X Liu , H Liu and F. Hu
  Objective

T-cell lymphoma invasion and metastasis 1 (Tiam1) specifically activates Rho-like GTPases (e.g. Rac1) and Tiam1–Rac1 pathway affects the migration and invasion of many tumors, such as nasopharyngeal carcinoma, breast cancer and retinoblastoma. However, no studies have yet comprehensively examined the involvement of Tiam1–Rac1 pathway in hepatocellular carcinoma. In this study, we examined the relationship of the up-regulation of Tiam1 and Rac1 with clinicopathological features in patients with hepatocellular carcinoma.

Methods

Expression of Tiam1 and Rac1 was assessed in 242 hepatocellular carcinoma tissues and their adjacent normal hepatic tissues by performing immunohistochemistry and was gauged regarding stage, grade and survival.

Results

Immunohistochemistry showed that patients with a high clinical stage hepatocellular carcinoma (III–IV) and -fetoprotein levels had a higher tendency to express Tiam1 and Rac1 on tumor cells than the patients with low pathologic grade hepatocellular carcinoma (I–II) (P = 0.008 and 0.01, respectively) and low -fetoprotein levels (P = 0.006 and 0.002, respectively). In addition, Tiam1 and Rac1 up-regulation was also significantly associated with vascular invasion status (both P = 0.02), intrahepatic metastasis status (P = 0.009 and 0.01, respectively) and histological differentiation (P = 0.008 and 0.009, respectively) of patients with hepatocellular carcinoma. Moreover, post-operative survival analysis indicated that hepatocellular carcinoma patients with strong Tiam1 (P = 0.01) and Rac1 (P = 0.02) expression had shorter disease-specific survival than those with weak expression. Multivariate analysis also showed that Tiam1 and Rac1 overexpression could be two predictors of poor prognosis (P = 0.02 and 0.03, respectively).

Conclusions

The current study demonstrated for the first time that the Tiam1–Rac1 pathway may play a critical role in tumor progression of hepatocellular carcinoma. The expression of Tiam1 and Rac1 can be considered as the two useful indicators for predicting the prognosis of hepatocellular carcinoma.

  L Pan , Q Xia , Z Quan , H Liu , W Ke and Y. Ding
 

Expressed sequence tags (ESTs) provide a valuable resource for the development of simple sequence repeat (SSR) or microsatellite markers. This study identified SSRs within ESTs from Nelumbo nucifera (lotus or sacred lotus), developed markers from them, and assessed the potential of those markers for diversity analysis. Within 2207 ESTs from N. nucifera downloaded from GenBank, 1483 unigenes (303 contigs and 1180 singletons) were identified. After eliminating for redundancy, 125 SSR-containing ESTs were derived, and 71 unique SSRs were detected with an average density of one SSR per 13.04 kb. Dinucleotide repeats were the dominant motif in N. nucifera, whereas the sequences AG/TC/GA/CT, AAG/TTC/GAT/AGA, and AAAGCC were the most frequent of di-, tri-, and hexanucleotide motifs, respectively. The AG/TC (40.85%) and AAG (5.63%) motifs were predominant for the di- and trinucleotide repeats, respectively. Sixty-two SSR-containing ESTs were suitable for primer design. From these sequences, 23 ESTSSR markers were developed and were applied to 39 cultivated varieties of N. nucifera, 10 accessions of wild N. nucifera, and 1 accession of Nelumbo lutea (American lotus). Genetic diversity and genetic relationships were examined by constructing unweighted pair-group method with arithmetic average dendrograms and principal coordinates analysis plots based on SSR polymorphisms. Results indicated genetic differentiation between cultivated and wild lotus and between seed lotus cultivars and rhizome lotus cultivars. These EST–SSR markers will be useful for further studies of the evolution and diversity of Nelumbo.

  H Jing , H Liu , D. F Bird , T. H. C Wong , X Chen and B. Chen
 

Phylogenetic diversity (18S rRNA gene) of picoeukaryotes in Hong Kong coastal waters is dominated by heterotrophic forms and influenced by the seasonally driven combination of freshwater discharge from the Pearl River, oceanic water of the South China Sea and coastal water from the China Coastal Current.

  Y Li , W Pan , W Xu , N He , X Chen , H Liu , L Darryl Quarles , H Zhou and Z. Xiao
 

Cleidocranial dysplasia (CCD) is an autosomal dominant bone disease in humans caused by haploinsufficiency of the RUNX2 gene. The RUNX2 has two major isoforms derived from P1 and P2 promoters. Over 90 mutations of RUNX2 have been reported associated with CCD. In our study, DNA samples of nine individuals from three unrelated CCD families were collected and screened for all exons of RUNX2 and 2 kb of P1 and P2 promoters. We identified two point mutations in the RUNX2 gene in Case 1, including a nonsense mutation (c.577C>T) that has been reported previously and a silent substitution (c.240G>A). In vitro studies demonstrated that c.577C>T mutation led to truncated RUNX2 protein production and diminished stimulating effects on mouse osteocalcin promoter activity when compared with full-length Runx2-II and Runx2-I isoforms. These results confirm that loss of function RUNX2 mutation (c.577C>T) in Case 1 family is responsible for its CCD phenotype.

  A. H Toychiev , R. Z Sabirov , N Takahashi , Y Ando Akatsuka , H Liu , T Shintani , M Noda and Y. Okada
 

The maxi-anion channel with a large single-channel conductance of >300 pS, and unknown molecular identity, is functionally expressed in a large variety of cell types. The channel is activated by a number of experimental maneuvers such as exposing cells to hypotonic or ischemic stress. The most effective and consistent method of activating it is patch membrane excision. However, the activation mechanism of the maxi-anion channel remains poorly understood at present. In the present study, involvement of phosphorylation/dephosphorylation in excision-induced activation was examined. In mouse mammary fibroblastic C127 cells, activity of the channel was suppressed by intracellular application of Mg-ATP, but not Mg-5'-adenylylimidodiphosphate (AMP-PNP), in a concentration-dependent manner. When a cocktail of broad-spectrum tyrosine phosphatase inhibitors was applied, channel activation was completely abolished, whereas inhibitors of serine/threonine protein phosphatases had no effect. On the other hand, protein tyrosine kinase inhibitors brought the channel out of an inactivated state. In mouse adult skin fibroblasts (MAFs) in primary culture, similar maxi-anion channels were found to be activated on membrane excision, in a manner sensitive to tyrosine phosphatase inhibitors. In MAFs isolated from animals deficient in receptor protein tyrosine phosphatase (RPTP), activation of the maxi-anion channel was significantly slower and less prominent compared with that observed in wild-type MAFs; however, channel activation was restored by transfection of the RPTP gene. Thus it is concluded that activation of the maxi-anion channel involves protein dephosphorylation mediated by protein tyrosine phosphatases that include RPTP in mouse fibroblasts, but not in C127 cells.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility