Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by H Lee
Total Records ( 9 ) for H Lee
  D. E Lee , S Kehlenbrink , H Lee , M Hawkins and J. S. Yudkin

Obesity is associated with resistance of skeletal muscle to insulin-mediated glucose uptake, as well as resistance of different organs and tissues to other metabolic and vascular actions of insulin. In addition, the body is exquisitely sensitive to nutrient imbalance, with energy excess or a high-fat diet rapidly increasing insulin resistance, even before noticeable changes occur in fat mass. There is a growing acceptance of the fact that, as well as acting as a storage site for surplus energy, adipose tissue is an important source of signals relevant to, inter alia, energy homeostasis, fertility, and bone turnover. It has also been widely recognized that obesity is a state of low-grade inflammation, with adipose tissue generating substantial quantities of proinflammatory molecules. At a cellular level, the understanding of the signaling pathways responsible for such alterations has been intensively investigated. What is less clear, however, is how alterations of physiology, and of signaling, within one cell or one tissue are communicated to other parts of the body. The concepts of cell signals being disseminated systemically through a circulating "endocrine" signal have been complemented by the view that local signaling may similarly occur through autocrine or paracrine mechanisms. Yet, while much elegant work has focused on the alterations in signaling that are found in obesity or energy excess, there has been less attention paid to ways in which such signals may propagate to remote organs. This review of the integrative physiology of obesity critically appraises the data and outlines a series of hypotheses as to how interorgan cross talk takes place. The hypotheses presented include the "fatty acid hypothesis,", the "portal hypothesis,", the "endocrine hypothesis,", the "inflammatory hypothesis,", the "overflow hypothesis,", a novel "vasocrine hypothesis," and a "neural hypothesis," and the strengths and weaknesses of each hypothesis are discussed.

  H Lee , M. C Mozer and S. P. Vecera

Previous research has shown that repetition of a task-relevant attention-capturing feature facilitates pop-out search. This priming of pop-out effect is due to some residual memory from recent trials. We explore two possible mechanisms of priming of pop-out: a top-down attentional benefit from a memory of the previous target representation that is stored in visual short-term memory (VSTM) and a bottom-up change of attentional gains from perceptual features of the previously attended target. We manipulated participants' ability to form a memory trace in VSTM by occupying it with a distractor task and found that occupying VSTM did not interfere with priming of pop-out. We next manipulated attentional gains associated with feature values by inserting an irrelevant task between pop-out searches. We found that the color of the target from the intervening perceptual task influenced pop-out search: The current pop-out search was facilitated when the intervening task's target matched the target color of the pop-out search. These results suggest that priming of pop-out might not be due to a memory trace of the previous targets in VSTM but, rather, might be due to changes in attentional control based on priming from relatively low-level feature representations of previously attended objects.

  H Lee , H Rosenmann , J Chapman , P. B Kingsley , C Hoffmann , O. S Cohen , E Kahana , A. D Korczyn and I. Prohovnik

Human prion diseases present substantial scientific and public health challenges. They are unique in being sporadic, infectious and inherited, and their pathogen is distinct from all other pathogens in lacking nucleic acids. Despite progress in understanding the molecular structure of prions, their initial cerebral pathophysiology and the loci of cerebral injury are poorly understood. As part of a large prospective study, we analysed early diffusion MRI scans of 14 patients with the E200K genetic form of Creutzfeldt–Jakob Disease, 20 healthy carriers of this mutation that causes the disease and 20 controls without the mutation from the same families. Cerebral diffusion was quantified by the Apparent Diffusion Coefficient, and analysed by voxel-wise statistical parametric mapping technique. Compared to the mutation-negative controls, diffusion was significantly reduced in a thalamic-striatal network, comprising the putamen and mediodorsal, ventrolateral and pulvinar thalamic nuclei, in both the patients and the healthy mutation carriers. With disease onset, these diffusion reductions intensified, but did not spread to other areas. The caudate nucleus was reduced only after symptomatic onset. These findings indicate that cerebral diffusion reductions can be detected early in the course of Creutzfeldt–Jakob Disease, and years before symptomatic onset in mutation carriers, in a distinct subcortical network. We suggest that this network is centrally involved in the pathogenesis of Creutzfeldt–Jakob Disease, and its anatomical connections are sufficient to account for the common symptoms of this disease. Further, we suggest that the abnormalities in healthy mutation-carrying subjects may reflect the accumulation of abnormal prion protein and/or associated vacuolation at this time, temporally close to disease onset.

  K Salehi Ashtiani , C Lin , T Hao , Y Shen , D Szeto , X Yang , L Ghamsari , H Lee , C Fan , R. R Murray , S Milstein , N Svrzikapa , M. E Cusick , F. P Roth , D. E Hill and M. Vidal

Although a highly accurate sequence of the Caenorhabditis elegans genome has been available for 10 years, the exact transcript structures of many of its protein-coding genes remain unsettled. Approximately two-thirds of the ORFeome has been verified reactively by amplifying and cloning computationally predicted transcript models; still a full third of the ORFeome remains experimentally unverified. To fully identify the protein-coding potential of the worm genome including transcripts that may not satisfy existing heuristics for gene prediction, we developed a computational and experimental platform adapting rapid amplification of cDNA ends (RACE) for large-scale structural transcript annotation. We interrogated 2000 unverified protein-coding genes using this platform. We obtained RACE data for approximately two-thirds of the examined transcripts and reconstructed ORF and transcript models for close to 1000 of these. We defined untranslated regions, identified new exons, and redefined previously annotated exons. Our results show that as much as 20% of the C. elegans genome may be incorrectly annotated. Many annotation errors could be corrected proactively with our large-scale RACE platform.

  J Ahn , H Lee , S Kim and T. Ha

Curcumin, a polyphenol found in the rhizomes of Curcuma longa, improves obesity-associated inflammation and diabetes in obese mice. Curcumin also suppresses adipocyte differentiation, although the underlying mechanism remains unclear. Here, we used 3T3-L1 cells to investigate the details of the mechanism underlying the anti-adipogenic effects of curcumin. Curcumin inhibited mitogen-activated protein kinase (MAPK) (ERK, JNK, and p38) phosphorylation that was associated with differentiation of 3T3-L1 cells into adipocytes. During differentiation, curcumin also restored nuclear translocation of the integral Wnt signaling component β-catenin in a dose-dependent manner. In parallel, curcumin reduced differentiation-stimulated expression of CK1, GSK-3β, and Axin, components of the destruction complex targeting β-catenin. Accordingly, quantitative PCR analysis revealed that curcumin inhibited the mRNA expression of AP2 (mature adipocyte marker) and increased the mRNA expression of Wnt10b, Fz2 (Wnt direct receptor), and LRP5 (Wnt coreceptor). Curcumin also increased mRNA levels of c-Myc and cyclin D1, well-known Wnt targets. These results suggest that the Wnt signaling pathway participates in curcumin-induced suppression of adipogenesis in 3T3-L1 cells.

  Y. L Huang , C. M Wu , G. Y Shi , G. C. C Wu , H Lee , M. J Jiang , H. L Wu and H. Y. Yang

Nestin is an intermediate filament protein mainly expressed in muscle and neural progenitors. Recently, we reported that nestin is expressed in rat vascular smooth muscle cells (VSMCs), disappears after serum-deprivation and then is re-expressed again following EGF stimulation. As the function of nestin in VSMCs remains unknown, its anti-apoptotic function was investigated in this study. We first showed that cell viability of nestin-depleted cells following H2O2 treatments decreased by nestin RNAi. Further DNA laddering analysis and flow cytometry results demonstrated that this loss of cell viability was mediated through apoptosis. In addition, caspase-9, caspase-3 and PARP were activated in nestin-depleted VSMCs following H2O2 treatments, indicating that nestin has an upstream inhibitory effect on caspase activation. It is well known that EGF serves as a survival factor in rat VSMCs. Here, we show that the cytoprotective effect of EGF was prevented by nestin RNAi. In addition, the inhibition of Cdk5 prevented Bcl-2 phosphorylation and enhanced H2O2-induced caspase-3 activation as well as subsequent DNA fragmentation. Taken together, these results provide evidence for another cytoprotective role of EGF in that it is mediated through its stimulation of nestin expression which leads to the prevention of caspase activation by Cdk-5-induced Bcl-2 phosphorylation in rat VSMCs.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility