Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by H Lassmann
Total Records ( 4 ) for H Lassmann
  A Junker , M Krumbholz , S Eisele , H Mohan , F Augstein , R Bittner , H Lassmann , H Wekerle , R Hohlfeld and E. Meinl
 

We established microRNA profiles from active and inactive multiple sclerosis lesions. Using laser capture microdissection from multiple sclerosis lesions to pool single cells and in vitro cultures, we assigned differentially expressed microRNA to specific cell types. Astrocytes contained all 10 microRNA that were most strongly upregulated in active multiple sclerosis lesions, including microRNA-155, which is known to modulate immune responses in different ways but so far had not been assigned to central nervous system resident cells. MicroRNA-155 was expressed in human astrocytes in situ, and further induced with cytokines in human astrocytes in vitro. This was confirmed with astrocyte cultures from microRNA-155-|-lacZ mice. We matched microRNA upregulated in phagocytically active multiple sclerosis lesions with downregulated protein coding transcripts. This converged on CD47, which functions as a ‘don’t eat me’ signal inhibiting macrophage activity. Three microRNA upregulated in active multiple sclerosis lesions (microRNA-34a, microRNA-155 and microRNA-326) targeted the 3'-untranslated region of CD47 in reporter assays, with microRNA-155 even at two distinct sites. Our findings suggest that microRNA dysregulated in multiple sclerosis lesions reduce CD47 in brain resident cells, releasing macrophages from inhibitory control, thereby promoting phagocytosis of myelin. This mechanism may have broad implications for microRNA-regulated macrophage activation in inflammatory diseases.

  S Veto , P Acs , J Bauer , H Lassmann , Z Berente , G Setalo , G Borgulya , B Sumegi , S Komoly , F Gallyas and Z. Illes
 

Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation.

  S Bramow , J. M Frischer , H Lassmann , N Koch Henriksen , C. F Lucchinetti , P. S Sorensen and H. Laursen
 

The causes of incomplete remyelination in progressive multiple sclerosis are unknown, as are the pathological correlates of the different clinical characteristics of patients with primary and secondary progressive disease. We analysed brains and spinal cords from 51 patients with progressive multiple sclerosis by planimetry. Thirteen patients with primary progressive disease were compared with 34 with secondary progressive disease. In patients with secondary progressive multiple sclerosis, we found larger brain plaques, more demyelination in total and higher brain loads of active demyelination compared with patients with primary progressive disease. In addition, the brain density of plaques with high-grade inflammation and active demyelination was highest in secondary progressive multiple sclerosis and remained ~18% higher than in primary progressive multiple sclerosis after adjustments for other plaque types and plaque number (P < 0.05). Conversely, the proportion of remyelinated shadow plaques (P < 0.05) and the overall remyelination capacity (P < 0.01) per brain were higher in primary, compared with secondary, progressive multiple sclerosis. By contrast, there were no group differences in the brain load or frequency of low-grade inflammatory plaques with slowly expanding demyelination. Spinal cord lesion loads and remyelination capacity were also comparable in the two patient groups. Remyelinated areas were more vulnerable than the normal-appearing white matter to new demyelination, including active demyelination in secondary progressive multiple sclerosis. ‘Recurrent’ slowly expanding demyelination, affecting remyelinated areas, and the load of slowly expanding demyelination correlated with incomplete remyelination in both groups. In turn, incomplete remyelination in the spinal cord correlated with higher disease-related disability (determined retrospectively; r = –0.53; P < 0.05 for remyelination capacity versus disease severity). By contrast, such a correlation was not observed in the brain. We propose that regulatory and reparative properties could protect the white matter of the brain in patients with primary progressive multiple sclerosis. These patients may, thereby, be spared symptoms until the spinal cord is affected. By contrast, recurrent active demyelination of repaired myelin could explain why similar symptoms often develop in consecutive relapses in relapsing-remitting/secondary progressive multiple sclerosis. Our data also indicate that slowly expanding demyelination may irreparably destroy normal and repaired myelin, supporting the concept of slowly expanding demyelination as an important pathological correlate of clinical progression.

  B Pollinger , G Krishnamoorthy , K Berer , H Lassmann , M. R Bosl , R Dunn , H. S Domingues , A Holz , F. C Kurschus and H. Wekerle
 

We describe new T cell receptor (TCR) transgenic mice (relapsing-remitting [RR] mice) carrying a TCR specific for myelin oligodendrocyte glycoprotein (MOG) peptide 92–106 in the context of I-As. Backcrossed to the SJL/J background, most RR mice spontaneously develop RR experimental autoimmune encephalomyelitis (EAE) with episodes often altering between different central nervous system tissues like the cerebellum, optic nerve, and spinal cord. Development of spontaneous EAE depends on the presence of an intact B cell compartment and on the expression of MOG autoantigen. There is no spontaneous EAE development in B cell–depleted mice or in transgenic mice lacking MOG. Transgenic T cells seem to expand MOG autoreactive B cells from the endogenous repertoire. The expanded autoreactive B cells produce autoantibodies binding to a conformational epitope on the native MOG protein while ignoring the T cell target peptide. The secreted autoantibodies are pathogenic, enhancing demyelinating EAE episodes. RR mice constitute the first spontaneous animal model for the most common form of multiple sclerosis (MS), RR MS.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility