Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by H Hu
Total Records ( 3 ) for H Hu
  L Peng , Y. L Ran , H Hu , L Yu , Q Liu , Z Zhou , Y. M Sun , L. C Sun , J Pan , L. X Sun , P Zhao and Z. H. Yang
 

The purpose of this study was to investigate invasion- and metastasis-related genes in gastric cancer. To this end, we used the transwell system to select a highly invasive subcell line from minimally invasive parent cells and compared gene expression in paired cell lines with high- and low-invasive potentials. Lysyl oxidase-like 2 (LOXL2) was overexpressed in the highly invasive subcell line. Immunohistochemical analysis revealed that LOXL2 expression was markedly increased in carcinoma relative to normal epithelia, and this overexpression in primary tumor was significantly associated with depth of tumor invasion, lymph node metastasis and poorer overall survival. Moreover, LOXL2 expression was further increased in lymph node metastases compared with primary cancer tissues. RNA interference-mediated knockdown and ectopic expression of LOXL2 showed that LOXL2 promoted tumor cell invasion in vitro and increased gastric carcinoma metastasis in vivo. Subsequent mechanistic studies showed that LOXL2 could activate both the Snail/E-cadherin and Src kinase/Focal adhesion kinase (Src/FAK) pathways. However, secreted LOXL2 induced gastric tumor cell invasion and metastasis exclusively via the Src/FAK pathway. Expression correlation analysis in gastric carcinoma tissues also revealed that LOXL2 promoted invasion via the Src/FAK pathway but not the Snail/E-cadherin pathway. We then evaluated secreted LOXL2 as a target for gastric carcinoma treatment and found that an antibody against LOXL2 significantly inhibited tumor growth and metastasis. Overall, our data revealed that LOXL2 overexpression, a frequent event in gastric carcinoma progression, contributes to tumor cell invasion and metastasis, and LOXL2 may be a therapeutic target for preventing and treating metastases.

  J. R Wang , H Hu , G. H Wang , J Li , J. Y Chen and P. Wu
 

Twelve genes of the PIN family in rice were analyzed for gene and protein structures and an evolutionary relationship with reported AtPINs in Arabidopsis. Four members of PIN1 (designated as OsPIN1a–d), one gene paired with AtPIN2 (OsPIN2), three members of PIN5 (OsPIN5a–c), one gene paired with AtPIN8 (OsPIN8), and three monocot-specific PINs (OsPIN9, OsPIN10a, and b) were identified from the phylogenetic analysis. Tissue-specific expression patterns of nine PIN genes among them were investigated using RT–PCR and GUS reporter. The wide variations in the expression domain in different tissues of the PIN genes were observed. In general, PIN genes are up-regulated by exogenous auxin, while different responses of different PIN genes to other hormones were found.

  L Du , R Damoiseaux , S Nahas , K Gao , H Hu , J. M Pollard , J Goldstine , M. E Jung , S. M Henning , C Bertoni and R. A. Gatti
 

Large numbers of genetic disorders are caused by nonsense mutations for which compound-induced readthrough of premature termination codons (PTCs) might be exploited as a potential treatment strategy. We have successfully developed a sensitive and quantitative high-throughput screening (HTS) assay, protein transcription/translation (PTT)–enzyme-linked immunosorbent assay (ELISA), for identifying novel PTC-readthrough compounds using ataxia-telangiectasia (A-T) as a genetic disease model. This HTS PTT-ELISA assay is based on a coupled PTT that uses plasmid templates containing prototypic A-T mutated (ATM) mutations for HTS. The assay is luciferase independent. We screened ~34,000 compounds and identified 12 low-molecular-mass nonaminoglycosides with potential PTC-readthrough activity. From these, two leading compounds consistently induced functional ATM protein in ATM-deficient cells containing disease-causing nonsense mutations, as demonstrated by direct measurement of ATM protein, restored ATM kinase activity, and colony survival assays for cellular radiosensitivity. The two compounds also demonstrated readthrough activity in mdx mouse myotube cells carrying a nonsense mutation and induced significant amounts of dystrophin protein.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility