Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by H He
Total Records ( 3 ) for H He
  K Kitahori , H He , M Kawata , D. B Cowan , I Friehs , P. J del Nido and F. X. McGowan
 

Background— Progressive left ventricular (LV) dysfunction can be a major late complication in patients with chronic right ventricular pressure overload (eg, tetralogy of Fallot). Therefore, we examined LV function (serial echocardiography and ex vivo Langendorff) and histology in a model of infant pressure-load right ventricular hypertrophy (RVH).

Methods and Results— Ten-day-old rabbits (n=6 per time point, total n=48) that underwent pulmonary artery banding were euthanized at 2 to 8 weeks after pulmonary artery banding, and comparisons were made with age-matched sham controls. LV performance (myocardial performance index) decreased during the progression of RVH, although the LV ejection fraction was maintained. In addition, RVH caused significant septal displacement, reduced septal contractility, and decreased LV end-systolic and end-diastolic dimensions, resulting in LV diastolic dysfunction with the appearance of preserved ejection fraction. Significant septal and LV free-wall apoptosis (myocyte-specific TUNEL and activated caspase-3), fibrosis (Masson trichrome stain), and reduced capillary density (CD31 immunostaining) occurred in the pulmonary artery banding group after 6 to 8 weeks (all P<0.05).

Conclusion— This is the first study showing that pressure overload of the right ventricular resulting in RVH causes LV diastolic dysfunction while preserving ejection fraction through mechanical and molecular effects on the septum and LV myocardium. In particular, the development of RVH is associated with septal and LV apoptosis and reduced LV capillary density.

  Z. L Chu , C Carroll , R Chen , J Alfonso , V Gutierrez , H He , A Lucman , C Xing , K Sebring , J Zhou , B Wagner , D Unett , R. M Jones , D. P Behan and J. Leonard
 

G protein-coupled receptor 119 (GPR119) is largely restricted to pancreatic insulin-producing β-cells and intestinal glucagon-like peptide-1-producing L-cells. Synthetic agonists of this receptor elicit glucose-dependent release of these endocrine factors, thereby enhancing glycemic control. Oleoylethanolamide also activates GPR119, but it remains unclear whether endogenous production of this lipid modulates GPR119 activity under normal or dysglycemic conditions. We show here that a relatively diverse set of lipid amides activate GPR119. Among these, the endovallinoid N-oleoyldopamine (OLDA) stimulated cAMP accumulation in GPR119-transfected cells as effectively as oleoylethanolamide and the previously described synthetic agonist AR231453. None of these lipid amides increased cAMP in control-transfected cells or in cells transfected with a number of other G protein-coupled receptors. OLDA stimulated both cAMP accumulation and insulin release in HIT-T15 cells, which express GPR119 endogenously, and in GPR119-transfected RIN-5F cells. Oral administration of OLDA to C57bl/6 mice elicited significant improvement in glucose tolerance, whereas GPR119-deficient mice were essentially unresponsive. OLDA also acutely elevated plasma gastric inhibitory peptide levels, a known hallmark of GPR119 activation. OLDA represents a possible paracrine modulator of GPR119 in pancreatic islets, where markers of dopamine synthesis correlated well with GPR119 expression. However, no such correlation was seen in the colon. Collectively, these studies indicate that multiple, distinct classes of lipid amides, acting via GPR119, may be important modulators of glucose homeostasis.

  A Dessein , C Chevillard , V Arnaud , X Hou , A. A Hamdoun , H Dessein , H He , S. A Abdelmaboud , X Luo , J Li , A Varoquaux , A Mergani , M Abdelwahed , J Zhou , A Monis , M. G.R Pitta , N Gasmelseed , S Cabantous , Y Zhao , A Prata , C Brandt , N. E Elwali , L Argiro and Y. Li
 

Abnormal fibrosis occurs during chronic hepatic inflammations and is the principal cause of death in hepatitis C virus and schistosome infections. Hepatic fibrosis (HF) may develop either slowly or rapidly in schistosome-infected subjects. This depends, in part, on a major genetic control exerted by genes of chromosome 6q23. A gene (connective tissue growth factor [CTGF]) is located in that region that encodes a strongly fibrogenic molecule. We show that the single nucleotide polymorphism (SNP) rs9402373 that lies close to CTGF is associated with severe HF (P = 2 x 10–6; odds ratio [OR] = 2.01; confidence interval of OR [CI] = 1.51–2.7) in two Chinese samples, in Sudanese, and in Brazilians infected with either Schistosoma japonicum or S. mansoni. Furthermore, SNP rs12526196, also located close to CTGF, is independently associated with severe fibrosis (P = 6 x 10–4; OR = 1.94; CI = 1.32–2.82) in the Chinese and Sudanese subjects. Both variants affect nuclear factor binding and may alter gene transcription or transcript stability. The identified variants may be valuable markers for the prediction of disease progression, and identify a critical step in the development of HF that could be a target for chemotherapy.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility