Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by H Fukui
Total Records ( 2 ) for H Fukui
  H Fukui , R Hanaoka and A. Kawahara

Vascular endothelial growth factor (Vegf) plays central roles in the establishment of stereotypic vascular patterning in vertebrates. However, it is not fully understood how the network of blood vessels is established and maintained during vascular development. A zebrafish ko095 mutant presented the disorganized vessels with abnormal branching of the established intersegmental vessels (ISVs) after 60 hours postfertilization. The gene responsible for ko095 encodes seryl-tRNA synthetase (Sars) with a nonsense mutation. The abnormal branching of ISVs in ko095 mutant was suppressed by the introduction of either wild-type Sars or a mutant Sars (T429A) lacking the enzymatic activity that catalyzes aminoacylation of transfer RNA for serine (canonical activity), suggesting that the abnormal branching is attributable to the loss of function of Sars besides its canonical activity. We further found the increased expression of vegfa in ko095 mutant at 72 hours postfertilization, which was also reversed by the introduction of Sars (T429A). Furthermore, the abnormal branching of ISVs in the mutant was suppressed by knockdown of vegfa or vegfr2 (kdra and kdrb). Knockdown of vegfc or vegfr3 rescued the abnormal ISV branching in ko095 mutant. These results suggest that the abnormal ISV branching in ko095 mutant is caused by the activated Vegfa-Vegfr2 signal and requires the Vegfc-Vegfr3 signal, because the latter is needed for general angiogenesis. Hence, we conclude that noncanonical activity of Sars is involved in vascular development presumably by modulating the expression of vegfa.

  Y Kushi , H Kamimiya , H Hiratsuka , H Nozaki , H Fukui , M Yanagida , M Hashimoto , K Nakamura , S Watarai , T Kasama , H Kajiwara and T. Yamamoto

Bacterial sialyltransferases (STs) from marine sources were characterized using glycosphingolipids (GSLs). Bacterial STs were found to be β-galacotoside STs. There were two types of STs: (1) ST obtained from strains such as ishi-224, 05JTC1 (#1), ishi-467, 05JTD2 (#2), and faj-16, 05JTE1 (#3), which form 2-3 sialic acid (Sia) linkages, named 2-3ST, (2) ST obtained from strains such as ISH-224, N1C0 (#4), pda-rec, 05JTB2 (#5), and pda-0160, 05JTA2 (#6), which form 2-6 Sia linkages, named 2-6ST. All STs showed affinity to neolacto- and lacto-series GSLs, particularly in neolactotetraosyl ceramide (nLc4Cer). No large differences were observed in the pH and temperature profiles of enzyme activities. Kinetic parameters obtained by Lineweaver–Burk plot analysis showed that #3 and #4 STs had practical synthetic activity and thus it became easily possible to achieve large-scale ganglioside synthesis (100–300 µM) using these recombinant enzymes. Gangliosides synthesized from nLc4Cer by 2-3 and 2-6STs were structurally characterized by several analytical and immunological methods, and they were identified as IV3NeuAc-nLc4Cer(S2-3PG) and IV6NeuAc-nLc4Cer (S2-6PG), respectively. Further characterization of these STs using lactotetraosylceramide (Lc4Cer), neolactohexaosylceramide (i antigen), and IV6kladoLc8Cer (I antigen) showed the synthesis of corresponding gangliosides as well. Synthesized gangliosides showed binding activity to the influenza A virus [A/panama/2007/99 (H3N2)] at a similar level to purified S2-3PG and S2-6PG from mammalian sources. The above evidence suggests that these STs have unique features, including substrate specificities restricted to lacto- and neolactoseries GSLs, as well as catalytic potentials for ganglioside synthesis. This demonstrates that efficient in vitro ganglioside synthesis could be a valuable tool for selectively synthesizing Sias modifications, thereby permitting the exploration of unknown functions.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility