Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Gamal El-din I. Harisa
Total Records ( 2 ) for Gamal El-din I. Harisa
  Gamal El-din I. Harisa
  The present study was conducted to investigate the effect of L-Arginine (Arg) supplementation on protein oxidation as well as Paraoxonase (PON) activities in rats received either normal or high cholesterol diet with or without 3% Arg in drinking water. Hypercholesterolemia (HC) was induced in rats by feeding diet containing cholesterol 5%, cholic acid 1% and propylthiouracil 0.5%. The spectrophotometric analysis methods were used for determination of lipid profiles as well as oxidative stress biomarkers in the plasma and liver tissues of rats. The results of current study revealed that the feeding of rats with Hypercholesterolemic Diet (HCD) resulted in significant increased of Atherogenic Index (AI) by 256% in respect to control rats. Arg supplementation to rats with HCD resulted in decrease of AI by 152% comparison with rats received HCD. Moreover, administration of Arg with normal or HCD attenuates the protein oxidation as well as lipids peroxidation in compared to intake of HCD alone. As a result of HCD feeding, plasma arylesterase (ARE) activity was decreased by 30% while in liver it decreased by 36%. Furthermore, paraoxonase activity (PON1) was decreased 42 and 74% for plasma and liver, respectively. On the other hand, the treatment with Arg ameliorates both activities in the plasma and liver in comparison with HCD. Arg preserve thiols and nitric oxide level, thereby reducing oxidative stress associated with increased cholesterol level. This may be related antioxidant effect of this amino acid. Therefore, Arg has beneficial effects in the treatment of HC thruogh decreases the proteins oxidation as well as preservation of high density lipoprotein function through maintaining PON activity.
  Gamal El-din I. Harisa
  In the past years, proinsulin-connecting peptide (C-peptide) considered a biologically inactive peptide. Recently it has been demonstrated that this peptide exert insulin-independent biological effects. This review provides a summary of recent research and discusses some beneficial and detrimental effects of C-peptide. The binding of C-peptide with cell membrane inducing signal transduction through G-Protein Coupled Receptors (GPCR). This resulted in phospholipase-C (PLC) activation that provokes an increase in Ca2+ and diacylglycerol (DAG) leading to activation of many cellular signaling. The treatment of diabetic patients in particular type 2 with C-peptide resulted in improved glucose metabolism as well as blood flow. So that renal functions in addition to nerve functions are get well again. C-peptide and insulin are secreted in equimolar amounts; therefore the measurement of C-peptide permits the quantitation of insulin secretion. Due to the longer half life of C-peptide than insulin it regard as a god indicator for endogenous insulin secretion. C-peptide is sensitive to physiological degradation therefore, several strategies are taken to improve the bioavailability for C-peptide. These strategies include amino acids modification, endogenous carrier conjugation, liposome incorporation and peptidase inhibition. These data indicated that C-peptide is biologically active peptide and has many functions in treatment of diabetic associated complications. Further, studies in particular in vivo are required to explore the exact roles of C-peptide the treatment of diabetic associated complications as well as cardiovascular disease.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility