Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by G. Mardani
Total Records ( 2 ) for G. Mardani
  M. Sadeghi , M. Arbabi , A. Nikpey and G. Mardani
  Problem Statement: MTBE is a common pollution of environmental and has become an issue of considerable concern in recent years. It is not readily amenable to remove MTBE by conventional techniques in water treatment. In the present study, the feasibility of the continuous aerobic biodegradation of MTBE, was evaluated in an Up- Flow Fixed Bed Reactor (UFBR). Approach: The UFBR at a constant Hydroulic Retention Time (HRT) of 24 h was used as a biological process that receives the intermediates due to partial oxidation of MTBE. The UFBR coupled to ozonation process as a survey system after a primary operation phase that was necessary for creatory of an initial microbial film on the carriers. Residual concentration of MTBE and its major degradation intermediates were measured by gas chromatography. Aqueous concentration of ozone in the reactor and ozone average concentration in off- gas were determined according to the indigo blue method. The COD reduction and BOD5 to COD ratio were selected as biodegradability indexes. Results: Results showed an effective degradation of MTBE in the coupled ozonation-UFBR continuous flow reactor of ten days of operation time. A partial degradation of MTBE in AOPs increases its biodegradation [The BOD5 to COD ratio increased from lowest (0.01) up to a maximum of 0.72] that corresponds to an ozone consumption of 0.62mg per each mg of COD initially present in the solution. The results showed when m. Mol[MTBE]o/m. Mol(o3) = 0.611, the COD removal efficiency was 89% and as this ratio increased up to 1.25, the of COD removal efficiency decreased to 80%. 46-68% removal of the COD was needed before the mixture was considered biodegradable. The highest removal rate of MTBE, 82.91 mg day-1 achieved through out the UFBR runs (87% removal efficiency, In this study, the removal efficiency of MTBE using integrated-process (ozonation followed biological treatment) was from 78.5-86.5%. In order to determine of biological removal rate of MTBE, another UFBR system used as a blank reactors. Results showed that the efficiency of the COD removal (by stripping with the biological degradation) was 5-8% which implies insignificant biological removal of MTBE without pre-ozonation. Solid produced in the proposed integrated process was 0.27-0.35 kg TSS kg-1 COD removed which is approximately in down range of conventional biological system (0.3-0.5 kg TSS kg-1COD). Conclusion: Present study showed that we can treatment of the polluted aqueous solutions to MTBE without microbial incubation used to integrated process.
  R. Sharafati-Chaleshtori , G. Mardani , M. Rafieian-Kopaei , A. Sharafati-Chaleshtori and F. Drees
  Nowadays, antibiotics are widely used in aquatic animals to control and treatment of infections or as food supplement for growth increase and animal output. With increasing use of veterinary drugs in food production, there is global consideration about the consumption of antimicrobial residues in aquatic foods and their effects on human health. This study was aimed to evaluate the Oxytetracycline (OTC) residues in Rainbow trout meat in Shahre-kord (Iran) markets before and after frying. After randomized collection of 50 samples of fish in Shahre-kord markets in a six months period were examined. The prepared samples were examined for OTC residues using HPLC analytical method before and after frying. Results showed that 3 (6%) of the samples before frying and 12 (24%) after frying were having lower than Maximum residual limits (MRLs) in Codex alimentarius. However, mean OTC residues before and after frying samples were above MRLs. The mean amounts of OTC were 2260±1090 and 1110±930 ng g-1 before and after frying, respectively. These findings show that the frying of fish reduces OTC residual. Nevertheless, the usage of OTC should be reduced to an acceptable level in fishery industry.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility