Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by G. Y. Oudit
Total Records ( 2 ) for G. Y. Oudit
  D Guo , Z Kassiri , R Basu , F. L Chow , V Kandalam , F Damilano , W Liang , S Izumo , E Hirsch , J. M Penninger , P. H Backx and G. Y. Oudit
  Rationale:

Mechanotransduction and the response to biomechanical stress is a fundamental response in heart disease. Loss of phosphoinositide 3-kinase (PI3K), the isoform linked to G protein–coupled receptor signaling, results in increased myocardial contractility, but the response to pressure overload is controversial.

Objective:

To characterize molecular and cellular responses of the PI3K knockout (KO) mice to biomechanical stress.

Methods and Results:

In response to pressure overload, PI3KKO mice deteriorated at an accelerated rate compared with wild-type mice despite increased basal myocardial contractility. These functional responses were associated with compromised phosphorylation of Akt and GSK-3. In contrast, isolated single cardiomyocytes from banded PI3KKO mice maintained their hypercontractility, suggesting compromised interaction with the extracellular matrix as the primary defect in the banded PI3KKO mice. β-Adrenergic stimulation increased cAMP levels with increased phosphorylation of CREB, leading to increased expression of cAMP-responsive matrix metalloproteinases (MMPs), MMP2, MT1-MMP, and MMP13 in cardiomyocytes and cardiofibroblasts. Loss of PI3K resulted in increased cAMP levels with increased expression of MMP2, MT1-MMP, and MMP13 and increased MMP2 activation and collagenase activity in response to biomechanical stress. Selective loss of N-cadherin from the adhesion complexes in the PI3KKO mice resulted in reduced cell adhesion. The β-blocker propranolol prevented the upregulation of MMPs, whereas MMP inhibition prevented the adverse remodeling with both therapies, preventing the functional deterioration in banded PI3KKO mice. In banded wild-type mice, long-term propranolol prevented the adverse remodeling and systolic dysfunction with preservation of the N-cadherin levels.

Conclusions:

The enhanced propensity to develop heart failure in the PI3KKO mice is attributable to a cAMP-dependent upregulation of MMP expression and activity and disorganization of the N-cadherin/β-catenin cell adhesion complex. β-Blocker therapy prevents these changes thereby providing a novel mechanism of action for these drugs.

  Z Kassiri , J Zhong , D Guo , R Basu , X Wang , P. P Liu , J. W Scholey , J. M Penninger and G. Y. Oudit
 

Background— Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that metabolizes Ang II into Ang 1-7, thereby functioning as a negative regulator of the renin-angiotensin system. We hypothesized that ACE2 deficiency may compromise the cardiac response to myocardial infarction (MI).

Methods and Results— In response to MI (induced by left anterior descending artery ligation), there was a persistent increase in ACE2 protein in the infarct zone in wild-type mice, whereas loss of ACE2 enhanced the susceptibility to MI, with increased mortality, infarct expansion, and adverse ventricular remodeling characterized by ventricular dilation and systolic dysfunction. In ACE2-deficient hearts, elevated myocardial levels of Ang II and decreased levels of Ang 1-7 in the infarct-related zone was associated with increased production of reactive oxygen species. ACE2 deficiency leads to increased matrix metalloproteinase (MMP) 2 and MMP9 levels with MMP2 activation in the infarct and peri-infarct regions, as well as increased gelatinase activity leading to a disrupted extracellular matrix structure after MI. Loss of ACE2 also leads to increased neutrophilic infiltration in the infarct and peri-infarct regions, resulting in upregulation of inflammatory cytokines, interferon-, interleukin-6, and the chemokine, monocyte chemoattractant protein-1, as well as increased phosphorylation of ERK1/2 and JNK1/2 signaling pathways. Treatment of Ace2/y-MI mice with irbesartan, an AT1 receptor blocker, reduced nicotinamide-adenine dinucleotide phosphate oxidase activity, infarct size, MMP activation, and myocardial inflammation, ultimately resulting in improved post-MI ventricular function.

Conclusions— We conclude that loss of ACE2 facilitates adverse post-MI ventricular remodeling by potentiation of Ang II effects by means of the AT1 receptors, and supplementing ACE2 can be a potential therapy for ischemic heart disease.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility