Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by G. M. Makrigiorgos
Total Records ( 2 ) for G. M. Makrigiorgos
  C. A Milbury , J Li and G. M. Makrigiorgos
 

Background: Analysis of clinical samples often necessitates identification of low-level somatic mutations within wild-type DNA; however, the selectivity and sensitivity of the methods are often limiting. COLD-PCR (coamplification at lower denaturation temperature–PCR) is a new form of PCR that enriches mutation-containing amplicons to concentrations sufficient for direct sequencing; nevertheless, sequencing itself remains an expensive mutation-screening approach. Conversely, high-resolution melting (HRM) is a rapid, inexpensive scanning method, but it cannot specifically identify the detected mutation. To enable enrichment, quick scanning, and identification of low-level unknown mutations, we combined COLD-PCR with HRM mutation scanning, followed by sequencing of positive samples.

Methods: Mutation-containing cell-line DNA serially diluted into wild-type DNA and DNA samples from human lung adenocarcinomas containing low-level mutations were amplified via COLD-PCR and via conventional PCR for TP53 (tumor protein p53) exons 6–8, and the 2 approaches were compared. HRM analysis was used to screen amplicons for mutations; mutation-positive amplicons were sequenced.

Results: Dilution experiments indicated an approximate 6- to 20-fold improvement in selectivity with COLD-PCR/HRM. Conventional PCR/HRM exhibited mutation-detection limits of approximately 2% to 10%, whereas COLD-PCR/HRM exhibited limits from approximately 0.1% to 1% mutant-to-wild-type ratio. After HRM analysis of lung adenocarcinoma samples, we detected 7 mutations by both PCR methods in exon 7; however, in exon 8 we detected 9 mutations in COLD-PCR amplicons, compared with only 6 mutations in conventional-PCR amplicons. Furthermore, 94% of the HRM-detected mutations were successfully sequenced with COLD-PCR amplicons, compared with 50% with conventional-PCR amplicons.

Conclusions: COLD-PCR/HRM improves the mutation-scanning capabilities of HRM and combines high selectivity, convenience, and low cost with the ability to sequence unknown low-level mutations in clinical samples.

  F Zerilli , C Bonanno , E Shehi , G Amicarelli , D Adlerstein and G. M. Makrigiorgos
  BACKGROUND:

Aberrant DNA methylation of gene promoters and the associated silencing of tumor suppressor genes are recognized as mechanisms contributing to tumor development. Therefore, detection of promoter hypermethylation is becoming important for diagnosis, prognosis, and aiding the design of cancer therapies. We describe a novel isothermal method for the detection of DNA hypermethylation.

METHODS:

Methylation-specific loop-mediated isothermal amplification (MS-LAMP) is a novel adaptation of LAMP. MS-LAMP was used for the highly specific detection of hypermethylated CpGs in the promoters of the CDKN2A [cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)], GATA5 (GATA binding protein 5), and DAPK1 (death-associated protein kinase 1) genes. The reactions occurred under isothermal conditions with 3 primer sets specific for methylated promoters. Both turbidimetry and fluorescence were used for detection. The MS-LAMP assay was validated with bisulfite-treated plasmid and genomic DNA controls of known methylation status and was applied to detect hypermethylation in 18 clinical tumor samples. A multiplex MS-LAMP for CDKN2A, GATA5, and DAPK1 was also validated with the aid of synthetic positive and negative controls.

RESULTS:

The MS-LAMP assay showed high specificity with plasmid and genomic DNA targets in reactions carried out in <1 h. The assay had a detection limit of approximately 30 copies of methylated target sequence and a selectivity of 0.5% methylated DNA in a mixture with unmethylated DNA. Compared with methylation-specific PCR, the MS-LAMP assay detected lower rates of methylation in lung adenocarcinoma samples. Simultaneous multiplex detection of hypermethylation in the 3 targets (CDKN2A, GATA5, and DAPK1) was readily achieved with the MS-LAMP assay in both the turbidimetric and fluorescence detection formats.

CONCLUSIONS:

MS-LAMP provides a highly specific isothermal method for methylation detection and is well suited for multiplex approaches.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility