Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by G Ying
Total Records ( 2 ) for G Ying
  K Narimatsu , M Li , P. H. L de Freitas , S Sultana , S Ubaidus , T Kojima , L Zhucheng , G Ying , R Suzuki , T Yamamoto , K Oda and N. Amizuka
 

Preosteoblasts are currently defined as the precursors of mature osteoblasts. These cells are morphologically diverse and may represent a continuum during osteoblast differentiation. We have attempted to categorize the different preosteoblastic phenotypes in vivo by examining bone cells expressing the runt-related transcription factor 2, alkaline phosphatase and BrdU incorporation – histological traits of a preosteoblast – under transmission electron microscopy (TEM). TEM observations demonstrated, at least, in part two preosteoblastic subtypes: (i) a cell rich in cisterns of rough endoplasmic reticulum (rER) with vesicles and vacuoles and (ii) a subtype featuring extended cytoplasmic processes that connect with distant cells, with a small amount of scattered cisterns of rER and with many vesicles and vacuoles. ER-rich cells, whose cellular machinery is similar to that of an osteoblast, were often seen adjacent to mature osteoblasts, and therefore, may be ready for terminal differentiation. In contrast, ER-poor and vesicle-rich cells extended their cytoplasmic processes to mature osteoblasts and, frequently, to bone-resorbing osteoclasts. The abundant vesicles and vacuoles identified in this cell type indicate that this cell is involved in vesicular transport rather than matrix synthesis activity. In summary, our study verified the morphological diversity and the ultrastructural properties of osteoblastic cells in vivo.

  Y Harada , C Elly , G Ying , J. H Paik , R. A DePinho and Y. C. Liu
 

The transcription factor Foxp3 is essential for optimal regulatory T (T reg) cell development and function. Here, we show that CD4+ T cells from Cbl-b RING finger mutant knockin or Cbl-b–deficient mice show impaired TGF-β–induced Foxp3 expression. These T cells display augmented Foxo3a phosphorylation, but normal TGF-β signaling. Expression of Foxo3a rescues Foxp3 expression in Cbl-b–deficient T cells, and Foxo3a deficiency results in defective TGF-β–driven Foxp3 induction. A Foxo3a-binding motif is present in a proximal region of the Foxp3 promoter, and is required for Foxo3a association. Foxo1 exerts similar effects as Foxo3a on Foxp3 expression. This study reveals that Foxo factors promote transcription of the Foxp3 gene in induced T reg cells, and thus provides new mechanistic insight into Foxo-mediated T cell regulation.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility