Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by G Reifenberger
Total Records ( 2 ) for G Reifenberger
  S Seidel , B. K Garvalov , V Wirta , L von Stechow , A Schanzer , K Meletis , M Wolter , D Sommerlad , A. T Henze , M Nister , G Reifenberger , J Lundeberg , J Frisen and T. Acker
 

Glioma growth and progression depend on a specialized subpopulation of tumour cells, termed tumour stem cells. Thus, tumour stem cells represent a critical therapeutic target, but the molecular mechanisms that regulate them are poorly understood. Hypoxia plays a key role in tumour progression and in this study we provide evidence that the hypoxic tumour microenvironment also controls tumour stem cells. We define a detailed molecular signature of tumour stem cell genes, which are overexpressed by tumour cells in vascular and perinecrotic/hypoxic niches. Mechanistically, we show that hypoxia plays a key role in the regulation of the tumour stem cell phenotype through hypoxia-inducible factor 2 and subsequent induction of specific tumour stem cell signature genes, including mastermind-like protein 3 (Notch pathway), nuclear factor of activated T cells 2 (calcineurin pathway) and aspartate beta-hydroxylase domain-containing protein 2. Notably, a number of these genes belong to pathways regulating the stem cell phenotype. Consistently, tumour stem cell signature genes are overexpressed in newly formed gliomas and are associated with worse clinical prognosis. We propose that tumour stem cells are maintained within a hypoxic niche, providing a functional link between the well-established role of hypoxia in stem cell and tumour biology. The identification of molecular regulators of tumour stem cells in the hypoxic niche points to specific signalling mechanisms that may be used to target the glioblastoma stem cell population.

  H. K Liu , Y Wang , T Belz , D Bock , A Takacs , B Radlwimmer , S Barbus , G Reifenberger , P Lichter and G. Schutz
 

Malignant gliomas are the most common primary brain tumors, and are associated with frequent resistance to therapy as well as poor prognosis. Here we demonstrate that the nuclear receptor tailless (Tlx), which in the adult is expressed exclusively in astrocyte-like B cells of the subventricular zone, acts as a key regulator of neural stem cell (NSC) expansion and brain tumor initiation from NSCs. Overexpression of Tlx antagonizes age-dependent exhaustion of NSCs in mice and leads to migration of stem/progenitor cells from their natural niche. The increase of NSCs persists with age, and leads to efficient production of newborn neurons in aged brain tissues. These cells initiate the development of glioma-like lesions and gliomas. Glioma development is accelerated upon loss of the tumor suppressor p53. Tlx-induced NSC expansion and gliomagenesis are associated with increased angiogenesis, which allows for the migration and maintenance of brain tumor stem cells in the perivascular niche. We also demonstrate that Tlx transcripts are overexpressed in human primary glioblastomas in which Tlx expression is restricted to a subpopulation of nestin-positive perivascular tumor cells. Our study clearly demonstrates how NSCs contribute to brain tumorgenesis driven by a stem cell-specific transcription factor, thus providing novel insights into the histogenesis and molecular pathogenesis of primary brain tumors.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility