Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by G Jin
Total Records ( 4 ) for G Jin
  Z Xia , G Jin , J Zhu and R. Zhou
 

Motivation: Mapping the antigenic and genetic evolution pathways of influenza A is of critical importance in the vaccine development and drug design of influenza virus. In this article, we have analyzed more than 4000 A/H3N2 hemagglutinin (HA) sequences from 1968 to 2008 to model the evolutionary path of the influenza virus, which allows us to predict its future potential drifts with specific mutations.

Results: The mutual information (MI) method was used to design a site transition network (STN) for each amino acid site in the A/H3N2 HA sequence. The STN network indicates that most of the dynamic interactions are positioned around the epitopes and the receptor binding domain regions, with strong preferences in both the mutation sites and amino acid types being mutated to. The network also shows that antigenic changes accumulate over time, with occasional large changes due to multiple co-occurring mutations at antigenic sites. Furthermore, the cluster analysis by subdividing the STN into several subnetworks reveals a more detailed view about the features of the antigenic change: the characteristic inner sites and the connecting inter-subnetwork sites are both responsible for the drifts. A novel five-step prediction algorithm based on the STN shows a reasonable accuracy in reproducing historical HA mutations. For example, our method can reproduce the 2003–2004 A/H3N2 mutations with ~70% accuracy. The method also predicts seven possible mutations for the next antigenic drift in the coming 2009–2010 season. The STN approach also agrees well with the phylogenetic tree and antigenic maps based on HA inhibition assays.

  C Wu , Z Hu , D Yu , L Huang , G Jin , J Liang , H Guo , W Tan , M Zhang , J Qian , D Lu , T Wu , D Lin and H. Shen
 

Recent three genome-wide association studies have mapped a lung cancer susceptibility locus to chromosome 15q25 in Caucasians. However, the reported risk single nucleotide polymorphisms (SNPs) are extremely rare in Asians, arguing against any of these being causative variants. This study sought to identify other variants on 15q25 associated with lung cancer susceptibility in Chinese. Two-stage case-control studies were conducted in subjects derived from both Northern and Southern China. The first-stage, consisting of 576 cases and 576 controls, was to discover novel risk variants using a haplotype-tagging SNP approach, and these variants were then replicated in the second-stage, consisting of 2,989 cases and 2,880 controls. Associations were estimated by logistic regression models, and function of the variants was examined by biochemical assays. We found that the three risk SNPs reported in Caucasians were not associated with lung cancer risk in Chinese. However, we identified four novel SNPs (rs2036534C>T, rs667282C>T, rs12910984G>A, and rs6495309T>C) that were associated with significantly increased lung cancer risk and smoking behavior, which were all confirmed in the replication analyses [odds ratios (95% confidence intervals) in the dominant model: 1.39 (1.23–1.57; P = 2.3 x 10–7), 1.52 (1.35–1.71; P = 2.0 x 10–12), 1.44 (1.28–1.63; P = 2.7 x 10–9), and 1.43 (1.27–1.61; P = 2.6 x 10–9), respectively]. We characterized the rs6495309T>C change in the CHRNA3 promoter as a functional variant because it affected the Oct-1 binding ability, resulting in increased CHRNA3 expression. These results support 15q25 as a susceptibility region for lung cancer in Chinese but underscore the difference in genetic markers among different ethnic populations. [Cancer Res 2009;69(12):5065–72]

  G Jin , L Xu , Y Shu , T Tian , J Liang , Y Xu , F Wang , J Chen , J Dai , Z Hu and H. Shen
 

Chromosome 5p15.33, containing TERT and CLPTM1L genes, was recently identified as one of the susceptible regions for lung cancer in Caucasian populations. We hypothesized that single-nucleotide polymorphisms (SNPs) identified in this region in Caucasians are also important in the development of lung cancer in Chinese population. To test this hypothesis, we genotyped two most significant SNPs reported in Caucasians, rs2736100A/C and rs402710C/T at 5p15.33, in a case–control study with 1221 non-small cell lung cancer (NSCLC) cases and 1344 cancer-free controls in a Chinese population. We found that rs2736100C allele in TERT gene was associated with a significantly increased risk of NSCLC with adjusted odds ratios of 1.26 [95% confidence interval (CI) = 1.05–1.51] and 1.31 (95% CI = 1.04–1.66) for one or two copies of the variant C allele, respectively. This significant association was more prominent among female (P for heterogeneity: 0.044), non-smokers (P for heterogeneity: 0.054) and/or the subjects with adenocarcinoma (P for heterogeneity: 0.058). However, no significant association was found between rs402710C/T and NSCLC risk. These results suggest that genetic variants in 5p15.33, especially in TERT gene, may also predispose the susceptibility of lung cancer, especially adenocarcinoma, in Chinese population.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility