Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Ferric C. Fang
Total Records ( 3 ) for Ferric C. Fang
  Kara L. Main-Hester , Katherine M. Colpitts , Gracie A. Thomas , Ferric C. Fang and Stephen J. Libby
  Salmonella enterica serovar Typhimurium harbors five pathogenicity islands (SPI) required for infection in vertebrate hosts. Although the role of SPI1 in promoting epithelial invasion and proinflammatory cell death has been amply documented, SPI4 has only more recently been implicated in Salmonella virulence. SPI4 is a 24-kb pathogenicity island containing six open reading frames, siiA to siiF. Secretion of the 595-kDa SiiE protein requires a type I secretory system encoded by siiC, siiD, and siiF. An operon polarity suppressor (ops) sequence within the 5' untranslated region upstream of siiA is required for optimal SPI4 expression and predicted to bind the antiterminator RfaH. SiiE concentrations are decreased in a SPI1 mutant strain, suggesting that SPI1 and SPI4 may have common regulatory inputs. SPI1 gene expression is positively regulated by the transcriptional activators HilA, HilC, and HilD, encoded within SPI1, and negatively regulated by the regulators HilE and PhoP. Here, we show that mutations in hilA, hilC, or hilD similarly reduce expression of siiE, and mutations in hilE or phoP enhance siiE expression. Individual overexpression of HilA, HilC, or HilD in the absence of SPI1 cannot activate siiE expression, suggesting that these transcriptional regulators act in concert or in combination with additional SPI1-encoded regulatory loci to activate SPI4. HilA is no longer required for siiE expression in an hns mutant strain, suggesting that HilA promotes SPI4 expression by antagonizing the global transcriptional silencer H-NS. Coordinate regulation suggests that SPI1 and SPI4 play complementary roles in the interaction of S. enterica serovar Typhimurium with the host intestinal mucosa.
  Wei Wang , Anthony R. Richardson , Willm Martens-Habbena , David A. Stahl , Ferric C. Fang and Eric J. Hansen
  Growth of Moraxella catarrhalis in a biofilm resulted in marked upregulation of two open reading frames (ORFs), aniA and norB, predicted to encode a nitrite reductase and a nitric oxide reductase, respectively (W. Wang, L. Reitzer, D. A. Rasko, M. M. Pearson, R. J. Blick, C. Laurence, and E. J. Hansen, Infect. Immun. 75:4959-4971, 2007). An ORF designated nsrR, which was located between aniA and norB, was shown to encode a predicted transcriptional regulator. Inactivation of nsrR resulted in increased expression of aniA and norB in three different M. catarrhalis strains, as measured by both DNA microarray analysis and quantitative reverse transcriptase PCR. Provision of a wild-type nsrR gene in trans in an nsrR mutant resulted in decreased expression of the AniA protein. DNA microarray analysis revealed that two other ORFs (MC ORF 683 and MC ORF 1550) were also consistently upregulated in an nsrR mutant. Consumption of both nitrite and nitric oxide occurred more rapidly with cells of an nsrR mutant than with wild-type cells. However, growth of nsrR mutants was completely inhibited by a low level of sodium nitrite. This inhibition of growth by nitrite was significantly reversed by introduction of an aniA mutation into the nsrR mutant and was completely reversed by the presence of a wild-type nsrR gene in trans. NsrR regulation of the expression of aniA was sensitive to nitrite, whereas NsrR regulation of norB was sensitive to nitric oxide.
  Serena Ammendola , Paolo Pasquali , Francesca Pacello , Giuseppe Rotilio , Margaret Castor , Stephen J. Libby , Nara Figueroa-Bossi , Lionello Bossi , Ferric C. Fang and Andrea Battistoni
  Many of the most virulent strains of Salmonella enterica produce two distinct Cu,Zn-superoxide dismutases (SodCI and SodCII). The bacteriophage-encoded SodCI enzyme makes the greater contribution to Salmonella virulence. We have performed a detailed comparison of the functional, structural, and regulatory properties of the Salmonella SodC enzymes. Here we demonstrate that SodCI and SodCII differ with regard to specific activity, protease resistance, metal affinity, and peroxidative activity, with dimeric SodCI exhibiting superior stability and activity. In particular, monomeric SodCII is unable to retain its catalytic copper ion in the absence of zinc. We have also found that SodCI and SodCII are differentially affected by oxygen, zinc availability, and the transcriptional regulator FNR. SodCII is strongly down-regulated under anaerobic conditions and dependent on the high affinity ZnuABC zinc transport system, whereas SodCI accumulation in vitro and within macrophages is FNR-dependent. We have confirmed earlier findings that SodCII accumulation in intracellular Salmonella is negligible, whereas SodCI is strongly up-regulated in macrophages. Our observations demonstrate that differences in expression, activity, and stability help to account for the unique contribution of the bacteriophage-encoded SodCI enzyme to Salmonella virulence.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility