Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by F. Gao
Total Records ( 2 ) for F. Gao
  L Ji , F Fu , L Zhang , W Liu , X Cai , Q Zheng , H Zhang and F. Gao
 

It is well known that insulin possesses a cardioprotective effect and that insulin resistance is closely related to cardiovascular diseases. Peroxynitrite (ONOO) formation may trigger oxidative/nitrative stress and represent a major cytotoxic effect in heart diseases. This study was designed to investigate whether insulin attenuates ONOO generation and oxidative/nitrative stress in acute myocardial ischemia/reperfusion (MI/R). Adult male rats were subjected to 30 min of myocardial ischemia and 3 h of reperfusion. Rats randomly received vehicle, insulin, or insulin plus wortmannin. Arterial blood pressure and left ventricular pressure were monitored throughout the experiment. Insulin significantly improved cardiac functions and reduced myocardial infarction, apoptotic cell death, and blood creatine kinase/lactate dehydrogenase levels following MI/R. Myocardial ONOO formation was significantly attenuated after insulin treatment. Moreover, insulin resulted in a significant increase in Akt and endothelial nitric oxide (NO) synthase (eNOS) phosphorylation, NO production, and antioxidant capacity in ischemic/reperfused myocardial tissue. On the other hand, insulin markedly reduced MI/R-induced inducible NOS (iNOS) and gp91phox expression in cardiac tissue. Inhibition of insulin signaling with wortmannin not only blocked the cardioprotection of insulin but also markedly attenuated insulin-induced antioxidative/antinitrative effect. Furthermore, the suppression on ONOO formation by either insulin or an ONOO scavenger uric acid reduced myocardial infarct size in rats subjected to MI/R. We concluded that insulin exerts a cardioprotective effect against MI/R injury by blocking ONOO formation. Increased physiological NO production (via eNOS phosphorylation) and superoxide anion reduction contribute to the antioxidative/antinitrative effect of insulin, which can be reversed by inhibiting phosphatidylinositol 3'-kinase. These results provide important novel information on the mechanisms of cardiovascular actions of insulin.

  M.J. Watson , B. Ke , X.-D. Shen , F. Gao , R.W. Busuttil , J.W. Kupiec-Weglinski and D.G. Farmer
  Background: Ischemia/reperfusion injury (IRI) is a major problem in intestinal transplantation. Toll-like receptor 4 (TLR4) has been implicated as a possible link between the innate and adaptive immune systems, however little data exists regarding TLR4 in intestinal IRI. The goal of this study is to evaluate the involvement of TLR4 in intestinal IRI and to assess the effect on T cell related chemokine programs.

Methods: C57BL6 mice underwent 100 minutes of warm intestinal ischemia by SMA clamping. Control WT mice underwent laparotomy without vascular occlusion. Separate survival and analysis groups were performed, and intestinal tissue was harvested at 1 hour, 2 hours, 4 hours, and 24 hours post-reperfusion. Analysis included histology, CD3 immunostaining, myeloperoxidase activity, Western blot, and PCR.

Results: Survival was significantly worse in the IRI group vs control (50% vs. 100%). IRI caused severe histopathological injury including mucosal erosions and villous congestion and hemorrhage. Myeloperoxidase activity increased in a time-dependent manner after IRI (2.71 0.25 at 1 hour, 2.92 0.25 at 2 hours, 4 0.16 at 4 hours, 5.1 0.25 at 24 hours vs 0.47 0.11 controls, P < .05). Protein expression of TLR4 followed by NF-κB was increased after IRI. Additionally, mRNA production of IP-10, MIP-2, MCP-1, and RANTES was increased at all time-points, as was mRNA for ICAM-1 and E-selectin.

Conclusion: This study is the first to demonstrate increased expression of TLR4 and NF-κB after warm intestinal IRI. This detrimental cascade may be initiated by TLR4 via NF-κB signaling pathways, implicating TLR4 as a potential therapeutic target for the prevention of intestinal IRI.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility