Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by F. Cisse
Total Records ( 2 ) for F. Cisse
  M.N. Ndjiondjop , P.A. Seck , M. Lorieux , K. Futakuchi , K.N. Yao , G. Djedatin , M.E. Sow , R. Bocco , F. Cisse and B. Fatondji
  Rice varieties response to drought has been extensively studied and many lines have been released, but identifying new tolerant lines is still a challenge for scientists due to the complexity and the specificity of this constraint over environments. Three sets of field experiments were conducted between 2006 and 2008 at Africa Rice Center research station, Togoudo, Benin to evaluate the effect of drought on some traits of rice (Oryza sp.). Three genotype types including 202 interspecific lines, from a cross between WAB56-104 (O. sativa subsp. japonica) and CG14 (O. glaberrima), adapted to upland conditions, 60 chromosome segment substitution lines made for lowland conditions and 211 accessions of O. glaberrima Steud., were evaluated using a split plot design replicated twice or thrice and an alpha lattice design with four blocks. There was a consistent negative effect of drought on plant height and grain yield across genotypes’ drought-tolerance levels and across genotype/types. Plant height and grain yield were more reduced for sensitive genotypes than for moderately tolerant and tolerant genotypes. Flowering and maturity were consistently delayed across genotype types and tolerance levels. Mean delays of 6.5, 21.8 and 9.4 days were observed for start, 50 and 100% flowering, respectively. Maturity was also delayed, with consistency across genotype types. However, no clear picture of drought effect on flowering and maturity was observed in terms of differences among drought-tolerance levels. The effects of drought on the number of tillers and on leaf temperature were not consistent. Plant height and grain yield showed the clearest differences between genotype-tolerance levels. Genotypes 151-3-8, 104-3-5, 116-2-4, 117-2-6, MPL-15-3, MPL-202-3, SENL-21-2, SENL-10-1, SENL-17-2, SENL-26-3, TOG5691, TOG6679 and TOG5591 yielded higher than the parents and checks.
  M. Sie , Y. Sere , S. Sanyang , L.T. Narteh , S. Dogbe , M.M. Coulibaly , A. Sido , F. Cisse , E. Drammeh , S.A. Ogunbayo , L. Zadj , B. Ndri and B. Toulou
  The immense potential of the lowlands in West and Central Africa for durable intensification of rice cropping have not been realised due to biotic and abiotic constraints. There is a need to replace existing rice varieties with others that are better adapted to the lowland conditions. After the success of the upland interspecific varieties, Africa Rice Center (WARDA) and its partners developed NERICA varieties suitable for irrigated and rainfed lowlands. The stable varieties resulting from this work were evaluated under preliminary yield trials in eight countries at 19 sites. The entries included 61 interspecific (O. glaberrima x O. sativa indica) varieties and 9 intraspecific (O. sativa indica x O. sativa indica) varieties. The aim of the study is to introduce new lowland NERICAs through a participatory approach and to identify ideotypes that are adapted to lowland conditions. Variations did exist among the 73 rice varieties with respect to the five traits that were evaluated. Total number of tillers, panicle number and flowering dates were observed to greatly influence the yield among the 73 varieties that were evaluated. A principal components plot clustering analysis were used to group the accessions. The interspecific varieties formed the most interesting group and have a better capacity for adaptation to the diversity of lowlands. They have acceptable yields, sometimes higher than those of intraspecific varieties and checks. Thus, most lowland NERICAs varieties tested in three ecologies could produce more than 5 t ha-1. The results obtained were quite encouraging and showed that, the varieties possess good agronomic traits that are well adapted to intensified lowland rice farming. The recent naming of some of these interspecific varieties as NERICA-L (New Rice for Africa Lowland) by Africa Rice Center has confirmed that they compare well with the traditional varieties. Thus, from this study, we now have a new set of interspecific varieties that are adapted to lowland conditions and which the national research programs can use in various tests for satisfying farmers` needs.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility