Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by F Zhou
Total Records ( 3 ) for F Zhou
  T Holopainen , H Huang , C Chen , K. E Kim , L Zhang , F Zhou , W Han , C Li , J Yu , J Wu , G. Y Koh , K Alitalo and Y. He
 

The angiopoietin-1 (Ang1)/Tie2 signaling pathway is known to play an important role in the regulation of vascular maturation and maintenance of vessel integrity. In this study, we have investigated the effect of systemic Tie2 activation or inhibition on tumor growth and metastasis. We found that treatment with Ang1 delivered via an adenoviral vector promoted s.c. implanted tumor metastasis to the lungs. Ang1 treatment did not significantly increase vascular density in the tumors but induced enlargement of blood vessels in both the tumor and normal tissues, which increased tumor cell dissemination into the blood circulation. Ang1 also enhanced the formation of metastatic foci in the lungs when tumor cells were injected into the circulation via the tail vein. The effect of Ang1 on metastasis was validated by a simultaneous treatment with a soluble form of Tie2 (sTie2), which led to the suppression of Ang1-induced increase of tumor metastasis. Furthermore, using a highly metastatic tumor model, we confirmed that systemic treatment with sTie2 suppressed tumor metastasis to the lungs and lymph nodes, whereas tumor-associated angiogenesis and lymphangiogenesis were not significantly affected. This suggests that the Ang1/Tie2 signals contribute to tumor progression by increasing vascular entry and exit of tumor cells to facilitate tumor dissemination and establishment of metastases. [Cancer Res 2009;69(11):4656–64]

  F Zhou , M Lu , W Wang , Z. P Bian , J. R Zhang and J. J. Zhu
  BACKGROUND:

The emergence of microfluidic immunosensors has provided a promising tool for improving clinical diagnoses. We developed an electrochemical immunoassay for the simultaneous detection of cardiac troponin I (cTnI) and C-reactive protein (CRP), based on microfluidic chips.

METHODS:

The quantitative methodology was based on ELISA in poly(dimethylsiloxane)-gold nanoparticle composite microreactors. CdTe and ZnSe quantum dots were bioconjugated with antibodies for sandwich immunoassay. After the CdTe and ZnSe quantum dots were dissolved, Cd2+ and Zn2+ were detected by square-wave anodic stripping voltammetry to enable the quantification of the 2 biomarkers. The 2 biomarkers were measured in 20 human serum samples by using the proposed method and commercially available methods.

RESULTS:

This immunosensor allowed simultaneous detection of serum cTnI and CRP. The linear range of this assay was between 0.01 and 50 µg/L and 0.5 and 200 µg/L, with the detection limits of approximately 5 amol and approximately 307 amol in 30-µL samples corresponding to cTnI and CRP, respectively. Slopes close to 1 and the correlation coefficient over 0.99 were obtained for both analytes.

CONCLUSIONS:

This strategy demonstrates a proof of principle for the successful integration of microfluidics with electrochemistry that can potentially provide an alternative to protein detection in the clinical laboratory.

  Y Wei , Y Ge , F Zhou , H Chen , C Cui , D Liu , Z Yang , G Wu , J Gu and J. Jiang
 

ATF5, a member of ATF/CREB family of b-ZIP transcription factors, is highly expressed in a wide variety of neoplasms and regulates cell differentiation, cell survival and apoptosis. However, the mechanism of human ATF5 transcriptional regulation has not been clarified. Here, we identified the transcription start site of the ATF5 gene, cloned its 5'-flanking region and identified the region –105 to +3 relative to the transcription start site as that having promoter activity. This region contained potential binding sites for several transcription factors, including EBF1, Sp1 and E2F1. EBF1 transcription factor binds to the ATF5 promoter and regulates the ATF5 transcription in an EBF-binding site independent manner. Thus, our studies not only provided molecular basis of ATF5 transcriptional regulation, but also identified ATF5 as a target gene of EBF1 transcription factor.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility