Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Erly Marwani
Total Records ( 2 ) for Erly Marwani
  Dikayani , Sri Nanan B. Widiyanto , Erly Marwani and Rina Ratnasih
  Environment has influenced the growth and development of agricultural crops including banana (Musa acuminata L.). Environmental stresses are caused by biotic factors such as fungi, bacteria and herbivore and abiotic factors such as temperature, water, light and salinity. Salinity stresses cause a decrease in the production of banana, because they affect the growth of the plant in the changing balance of Na+ and Cl‾ ions and changes in the plant’s primary metabolites including fatty acid compounds. The purpose of the research was to identify the fatty acid compounds. The research method was conducted in 2 stages: phase (1) Developing in vitro culture of banana shoots with NaCl treatment of 0, 50, 100, 150 and 200 mM concentrations, (2) Gas Chromatography Mass Spectrometry (GCMS) analysis on the roots of in vitro banana planlets. The results showed that the fatty acid compounds involved in the protection against salt stress. The fatty acid the highest area compound in 0 mM treatment 9 Octadecanoic acid methyl ester were (14:36%), 50 mM treatment 9-octadecanoic acid methyl ester 13.13% and 100 mM treatment Tridecanoic acid 11.8%. In 150 mM treatment 9,12 octadecanoic acid 31.03%, whereas, the highest area in 200 mM treatment 9,12 octadecanoic acid 36.49%.
  Diky Setya Diningrat and Erly Marwani
  Background and Objective: Buasbuas is the one of the medicinal plants in Indonesia that contains bioactive compounds potential as antimicrobial, antioxidant, antidiabetes, antiinflammation and anticancer. Exploring the pathway and gene related of buasbuas bioactive compounds production has led to the renaissance of understanding buasbuas molecular mechanism database. The aim of this study was to developed data-mining framework of buasbuas to study plant specialized metabolism for phytochemical biosynthesis. Material and Methods: This project was started by collecting shoots and leaves of Buasbuas. Focus of the project was exploring the molecular mechanisms on biosynthesis phytochemical of Buasbuas. Illumina Mi-Seq Next Generation Sequencing was utilized to understand the molecular mechanisms of biosynthesis. Transcriptomes then trimmed and assembled with CLCBio genomic software. Assembled contigs then annotated towards Arabidopsis thaliana using CLC Bio genomic software. Digital Gene Expression was performed to analyze the transcriptional changes in control culture and treatment. Results: There were 5.342 unigenes that expressed only in treatment shoot cultures. Annotation with Gene Ontology showed that 57.9% (3.446) unigenes play role in Biological Process, 56.7% (3.375) unigenes play role in Cellular Components and 63.4% (3.772) unigenes play role in Molecular Functions. Annotation with Kyoto Encyclopedia of Genes and Genomes shows 853 unigenes essentially have role in 24 biological pathways. Highest process with highest unigenes involvement is biosynthesis of plant hormones and biosynthesis of alkaloids. Conclusion: This study showed that phytochemical biosynthesis in buasbuas induces level expression of several genes involved in the jasmonic acid, cytokinin, gibberellin, salicylic acid and ethylene biosynthesis pathway.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility