Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by E. SCHNUG
Total Records ( 2 ) for E. SCHNUG
  The contents of nitrogen and organic carbon in an agricultural soil were analyzed using reflectance measurements (n = 52) performed with an ASD FieldSpec-II spectroradiometer. For parameter prediction, empirical models based on partial least squares (PLS) regression were defined from the measured reflectance spectra (0.4 to 2.4 μm). Here, reliable estimates were obtained for nitrogen content, but prediction accuracy was only moderate for organic carbon. For nitrogen, the real spatial pattern of within-field variability was reproduced with high accuracy. The results indicate the potential of this method as a quick screening tool for the spatial assessment of nitrogen and organic carbon, and therefore an appropriate alternative to time- and cost-intensive chemical analysis in the laboratory.
  The prediction of the oxidation rate of elemental sulfur (S0) is a critical step in sulfur (S) fertilizer strategy to supply plant-available sulfur. An incubation experiment was conducted to determine the rate and amount of S0 oxidation in relation to the contribution of Thiobacillus spp. and aerobic heterotrophic S-oxidizing bacteria. After 84 days, 16.3% and 22.4% of the total S0 applied to the soil were oxidized at 20 and 30 °C, respectively. The oxidation of S0 proved to be a two-step process with a rapid oxidation during the first 28 days and a slow oxidation from then on. The highest oxidation rate of 12.8 μg S cm−2 d−1 was measured during the first two weeks at 30 °C. At 20 °C the highest oxidation rate of 10.2 μg S cm−2 d−1 was obtained from two to four weeks after start of the experiment. On an average the soil pH declined by 3.6 and 4.0 units after two weeks of experiment. At the same time the electric conductivity increased nine times. With the oxidation of S0 the population of Thiobacillus spp. and aerobic heterotrophic S-oxidizing bacteria increased. The corresponding values for Thiobacillus spp. and aerobic heterotrophic S-oxidizing bacteria increased from 2.9 × 105 and 1.4 × 105 g−1 soil at the start of the experiment to 4 × 108 and 5.6 × 108 g−1 soil 14 days after S0 application, respectively. No Thiobacillus spp. was present eight weeks after S0 application. The results suggested that oxidation of residual S0 completely relied on aerobic heterotrophic S-oxidizing bacteria.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility