Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by E. M. McNally
Total Records ( 2 ) for E. M. McNally
  M Hofmann Bowman , J Wilk , A Heydemann , G Kim , J Rehman , J. A Lodato , J Raman and E. M. McNally
 

Rationale: S100A12 is a small calcium binding protein that is a ligand of RAGE (receptor for advanced glycation end products). RAGE has been extensively implicated in inflammatory states such as atherosclerosis, but the role of S100A12 as its ligand is less clear.

Objective: To test the role of S100A12 in vascular inflammation, we generated and analyzed mice expressing human S100A12 in vascular smooth muscle under control of the smooth muscle 22 promoter because S100A12 is not present in mice.

Methods and Results: Transgenic mice displayed pathological vascular remodeling with aberrant thickening of the aortic media, disarray of elastic fibers, and increased collagen deposition, together with increased latent matrix metalloproteinase-2 protein and reduction in smooth muscle stress fibers leading to a progressive dilatation of the aorta. In primary aortic smooth muscle cell cultures, we found that S100A12 mediates increased interleukin-6 production, activation of transforming growth factor β pathways and increased metabolic activity with enhanced oxidative stress. To correlate our findings to human aortic aneurysmal disease, we examined S100A12 expression in aortic tissue from patients with thoracic aortic aneurysm and found increased S100A12 expression in vascular smooth muscle cells.

Conclusions: S100A12 expression is sufficient to activate pathogenic pathways through the modulation of oxidative stress, inflammation and vascular remodeling in vivo.

  L. M Dellefave , P Pytel , S Mewborn , B Mora , D. L Guris , S Fedson , D Waggoner , I Moskowitz and E. M. McNally
 

Background— Mutations in the genes encoding sarcomere proteins have been associated with both hypertrophic and dilated cardiomyopathy. Recently, mutations in myosin heavy chain (MYH7), cardiac actin (ACTC), and troponin T (TNNT2) were associated with left ventricular noncompaction, a form of cardiomyopathy characterized with hypertrabeculation that may also include reduced function of the left ventricle.

Methods and Results— We used clinically available genetic testing on 3 cases referred for evaluation of left ventricular dysfunction and noncompaction of the left ventricle and found that all 3 individuals carried sarcomere mutations. The first patient presented with neonatal heart failure and was referred for left ventricular noncompaction cardiomyopathy. Genetic testing found 2 different mutations in MYBPC3 in trans. The first mutation, 3776delA, Q1259fs, rendered a frame shift at 1259 of cardiac myosin-binding protein C and the second mutation was L1200P. The frameshift mutation was also found in this mother who displayed mild echocardiographic features of cardiomyopathy, with only subtle increase in trabeculation and an absence of hypertrophy. A second pediatric patient presented with heart failure and was found to carry a de novo MYH7 R369Q mutation. The third case was an adult patient with dilated cardiomyopathy referred for ventricular hypertrabeculation. This patient had a family history of congestive heart failure, including pediatric onset cardiomyopathy where 3 individuals in the family were found to have the MYH7 mutation R1250W.

Conclusion— Genetic testing should be considered for cardiomyopathy with hypertrabeculation.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility