Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by Dzuraidah Abdul Wahab
Total Records ( 2 ) for Dzuraidah Abdul Wahab
  Suzaimah Ramli , Mohd Marzuki Mustafa , Aini Hussain and Dzuraidah Abdul Wahab
  Currently, many recycling activities adopt manual sorting for plastic recycling that relies on plant personnel who visually identify and pick plastic bottles as they travel along the conveyor belt. These bottles are then sorted into the respective containers. Manual sorting may not be a suitable option for recycling facilities of high throughput. It has also been noted that the high turnover among sorting line workers had caused difficulties in achieving consistency in the plastic separation process.As a result, an intelligent system for automated sorting is greatly needed to replace manual sorting system. The core components of machine vision for this intelligent sorting system is the image recognition and classification. In this research, the overall plastic bottle sorting system is described. Additionally, the feature extraction algorithm used is discussed in detail since it is the core component of the overall system that determines the success rate. The performance of the proposed feature extractions were evaluated in terms of classification accuracy and result obtained showed an accuracy of more than 80%.
  Edgar Scavino , Dzuraidah Abdul Wahab , Hassan Basri , Mohd Marzuki Mustafa and Aini Hussain
  Problem statement: Segmentation is the first and fundamental step in the process of computer vision and object classification. However, complicate or similar colour pattern add complexity to the segmentation of touching objects. The objective of this study was to develop a robust technique for the automatic segmentation and classification of touching plastic bottles, whose features were previously stored in a database. Approach: Our technique was based on the possibility to separate the two objects by means of a segment of straight line, whose position was determined by a genetic approach. The initial population of the genetic algorithm was heuristically determined among a large set of cutting lines, while further generations were selected based on the likelihood of the two objects with the images stored in the database. Results: Extensive testing, which was performed on random couples out of a population of 50 bottles, showed that the correct segmentation could be achieved in success rates above 90% with only a limited number of both chromosomes and iterations, thus reducing the computing time. Conclusion: These findings proved the effectiveness of our method as far as touching plastic bottles are concerned. This technique, being absolutely general, can be extended to any situation in which the properties of single objects were previously stored in a database.
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility