Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Duanqing Pei
Total Records ( 3 ) for Duanqing Pei
  Zhe Wang , Tianhua Ma , Xiaoke Chi and Duanqing Pei
  Nanog was identified by its ability to sustain the LIF-independent self-renewal of mouse embryonic stem (ES) cells and has recently been shown to play a role in reprogramming adult fibroblasts into pluripotent stem cells. However, little is known about the structural basis of these remarkable activities of Nanog. We have previously identified an unusually strong transactivator named CD2 at its C terminus. Here we demonstrate that CD2 is required for Nanog to mediate ES cell self-renewal. Furthermore, deletion and point mutation analysis revealed that CD2 relies on at least seven aromatic amino acid residues to generate its potent transactivating activity. A mutant Nanog bearing alanine substitutions for these seven residues fails to confer LIF-independent self-renewal in mouse ES cells. Substitution of CD2 by the viral transactivator VP16 gave rise to Nanog-VP16, which is 10 times more active than wild-type Nanog in ES cells. Surprisingly, the expression of Nanog-VP16 in mouse ES cells induces differentiation and is thus unable to sustain LIF-independent self-renewal for mouse ES cells. Taken together, our results demonstrate that the CD2 domain of Nanog is a unique transactivator that utilizes aromatic residues to confer specific activity absolutely required for ES self-renewal.
  Dajiang Qin , Yi Gan , Kaifeng Shao , Hao Wang , Wen Li , Tao Wang , Wenzhi He , Jianyong Xu , Yu Zhang , Zhaohui Kou , Lingwen Zeng , Guoqing Sheng , Miguel A. Esteban , Shaorong Gao and Duanqing Pei
  Induced pluripotent stem cell technology, also termed iPS, is an emerging approach to reprogram cells into an embryonic stem cell-like state by viral transduction with defined combinations of factors. iPS cells share most characteristics of embryonic stem cells, counting pluripotency and self-renewal, and have so far been obtained from mouse and humans, including patients with genetic diseases. Remarkably, autologous transplantation of cell lineages derived from iPS cells will eliminate the possibility of immunological rejection, as well as current ethical issues surrounding human embryonic stem cell research. However, before iPS can be used for clinical purposes, technical problems must be overcome. Among other considerations, full and homogeneous iPS reprogramming is an important prerequisite. However, despite the fact that cells from several mouse tissues can be successfully induced to iPS, the overall efficiency of chimera formation of these clones remains low even if selection for Oct4 or Nanog expression is applied. In this report, we demonstrate that cells from the mouse meningeal membranes express elevated levels of the embryonic master regulator Sox2 and are highly amenable to iPS. Meningeal iPS clones, generated without selection, are fully and homogeneously reprogrammed based on DNA methylation analysis and 100% chimera competent. Our results define a population of somatic cells that are ready to undergo iPS, thus highlighting a very attractive cell type for iPS research and application.
  Xiaofei Zhang , Juan Zhang , Tao Wang , Miguel A. Esteban and Duanqing Pei
  The genetic program of embryonic stem (ES) cells is orchestrated by a core of transcription factors that has OCT4, SOX2, and NANOG as master regulators. Protein levels of these core factors are tightly controlled by autoregulatory and feed-forward transcriptional mechanisms in order to prevent early differentiation. Recent studies have shown that knockdown of Esrrb (estrogen-related-receptor β), a member of the nuclear orphan receptor family, induces differentiation of mouse ES cells cultured in the presence of leukemia inhibitory factor. It was however not known how knocking down Esrrb exerts this effect. Herein we have identified two ESRRB binding sites in the proximal 5'-untranslated region of the mouse Oct4 gene, one of which is in close proximity to a NANOG binding site. Both ESRRB and NANOG are necessary for maintaining the activity of this promoter in ES cell lines. We have also demonstrated that the two transcription factors interact through their DNA binding domains. This interaction reciprocally modulates their transcriptional activities and may be important to fine-tune ES cell pluripotency. Supporting all of these data, stable transfection of Esrrb in ES cell lines proved sufficient to sustain their characteristics in the absence of leukemia-inhibitory factor. In summary, our experiments help to understand how Esrrb coordinates with Nanog and Oct4 to activate the internal machinery of ES cells.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility