Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by D. A Kass
Total Records ( 5 ) for D. A Kass
  N Kaludercic , E Takimoto , T Nagayama , N Feng , E. W Lai , D Bedja , K Chen , K. L Gabrielson , R. D Blakely , J. C Shih , K Pacak , D. A Kass , F Di Lisa and N. Paolocci

Rationale: Monoamine oxidases (MAOs) are mitochondrial enzymes that catabolize prohypertrophic neurotransmitters, such as norepinephrine and serotonin, generating hydrogen peroxide. Because excess reactive oxygen species and catecholamines are major contributors to the pathophysiology of congestive heart failure, MAOs could play an important role in this process.

Objective: Here, we investigated the role of MAO-A in maladaptive hypertrophy and heart failure.

Methods and Results: We report that MAO-A activity is triggered in isolated neonatal and adult myocytes on stimulation with norepinephrine, followed by increase in cell size, reactive oxygen species production, and signs of maladaptive hypertrophy. All of these in vitro changes occur, in part, independently from - and β-adrenergic receptor–operated signaling and are inhibited by the specific MAO-A inhibitor clorgyline. In mice with left ventricular dilation and pump failure attributable to pressure overload, norepinephrine catabolism by MAO-A is increased accompanied by exacerbated oxidative stress. MAO-A inhibition prevents these changes, and also reverses fetal gene reprogramming, metalloproteinase and caspase-3 activation, as well as myocardial apoptosis. The specific role of MAO-A was further tested in mice expressing a dominant-negative MAO-A (MAO-Aneo), which were more protected against pressure overload than their wild-type littermates.

Conclusions: In addition to adrenergic receptor–dependent mechanisms, enhanced MAO-A activity coupled with increased intramyocardial norepinephrine availability results in augmented reactive oxygen species generation, contributing to maladaptive remodeling and left ventricular dysfunction in hearts subjected to chronic stress.

  G. G Hesketh , M. H Shah , V. L Halperin , C. A Cooke , F. G Akar , T. E Yen , D. A Kass , C. E Machamer , J. E Van Eyk and G. F. Tomaselli

Rationale: Gap junctions mediate cell-to-cell electric coupling of cardiomyocytes. The primary gap junction protein in the working myocardium, connexin43 (Cx43), exhibits increased localization at the lateral membranes of cardiomyocytes in a variety of heart diseases, although the precise location and function of this population is unknown.

Objective: To define the subcellular location of lateralized gap junctions at the light and electron microscopic level, and further characterize the biochemical regulation of gap junction turnover.

Methods and Results: By electron microscopy, we characterized gap junctions formed between cardiomyocyte lateral membranes in failing canine ventricular myocardium. These gap junctions were varied in structure and appeared to be extensively internalizing. Internalized gap junctions were incorporated into multilamellar membrane structures, with features characteristic of autophagosomes. Intracellular Cx43 extensively colocalized with the autophagosome marker GFP-LC3 when both proteins were exogenously expressed in HeLa cells, and endogenous Cx43 colocalized with GFP-LC3 in neonatal rat ventricular myocytes. Furthermore, a distinct phosphorylated form of Cx43, as well as the autophagosome-targeted form of LC3 (microtubule-associated protein light chain 3) targeted to lipid rafts in cardiac tissue, and both were increased in heart failure.

Conclusions: Our data demonstrate a previously unrecognized pathway of gap junction internalization and degradation in the heart and identify a cellular pathway with potential therapeutic implications.

  A. S Barth , T Aiba , V Halperin , D DiSilvestre , K Chakir , C Colantuoni , R. S Tunin , V. L Dimaano , W Yu , T. P Abraham , D. A Kass and G. F. Tomaselli

Background— Cardiac electromechanical dyssynchrony causes regional disparities in workload, oxygen consumption, and myocardial perfusion within the left ventricle. We hypothesized that such dyssynchrony also induces region-specific alterations in the myocardial transcriptome that are corrected by cardiac resynchronization therapy (CRT).

Methods and Results— Adult dogs underwent left bundle branch ablation and right atrial pacing at 200 bpm for either 6 weeks (dyssynchronous heart failure, n=12) or 3 weeks, followed by 3 weeks of resynchronization by biventricular pacing at the same pacing rate (CRT, n=10). Control animals without left bundle branch block were not paced (n=13). At 6 weeks, RNA was isolated from the anterior and lateral left ventricular (LV) walls and hybridized onto canine-specific 44K microarrays. Echocardiographically, CRT led to a significant decrease in the dyssynchrony index, while dyssynchronous heart failure and CRT animals had a comparable degree of LV dysfunction. In dyssynchronous heart failure, changes in gene expression were primarily observed in the anterior LV, resulting in increased regional heterogeneity of gene expression within the LV. Dyssynchrony-induced expression changes in 1050 transcripts were reversed by CRT to levels of nonpaced hearts (false discovery rate <5%). CRT remodeled transcripts with metabolic and cell signaling function and greatly reduced regional heterogeneity of gene expression as compared with dyssynchronous heart failure.

Conclusions— Our results demonstrate a profound effect of electromechanical dyssynchrony on the regional cardiac transcriptome, causing gene expression changes primarily in the anterior LV wall. CRT corrected the alterations in gene expression in the anterior wall, supporting a global effect of biventricular pacing on the ventricular transcriptome that extends beyond the pacing site in the lateral wall.

  G Agnetti , N Kaludercic , L. A Kane , S. T Elliott , Y Guo , K Chakir , D Samantapudi , N Paolocci , G. F Tomaselli , D. A Kass and J. E. Van Eyk

Background— Cardiac resynchronization therapy (CRT) improves chamber mechanoenergetics and morbidity and mortality of patients manifesting heart failure with ventricular dyssynchrony; however, little is known about the molecular changes underlying CRT benefits. We hypothesized that mitochondria may play an important role because of their involvement in energy production.

Methods and Results— Mitochondria isolated from the left ventricle in a canine model of dyssynchronous or resynchronized (CRT) heart failure were analyzed by a classical, gel-based, proteomic approach. Two-dimensional gel electrophoresis revealed that 31 mitochondrial proteins where changed when controlling the false discovery rate at 30%. Key enzymes in anaplerotic pathways, such as pyruvate carboxylation and branched-chain amino acid oxidation, were increased. These concerted changes, along with others, suggested that CRT may increase the pool of Krebs cycle intermediates and fuel oxidative phosphorylation. Nearly 50% of observed changes pertained to subunits of the respiratory chain. ATP synthase-β subunit of complex V was less degraded, and its phosphorylation modulated by CRT was associated with increased formation (2-fold, P=0.004) and specific activity (+20%, P=0.05) of the mature complex. The importance of these modifications was supported by coordinated changes in mitochondrial chaperones and proteases. CRT increased the mitochondrial respiratory control index with tightened coupling when isolated mitochondria were reexposed to substrates for both complex I (glutamate and malate) and complex II (succinate), an effect likely related to ATP synthase subunit modifications and complex quantity and activity.

Conclusions— CRT potently affects both the mitochondrial proteome and the performance associated with improved cardiac function.

  H Ashikaga , C Leclercq , J Wang , D. A Kass and E. R. McVeigh

Earlier studies have yielded conflicting evidence on whether or not cardiac resynchronization therapy (CRT) improves left ventricular (LV) rotation mechanics.

Methods and Results—

In dogs with left bundle branch block and pacing-induced heart failure (n=7), we studied the effects of CRT on LV rotation mechanics in vivo by 3-dimensional tagged magnetic resonance imaging with a temporal resolution of 14 ms. CRT significantly improved hemodynamic parameters but did not significantly change the LV rotation or rotation rate. LV torsion, defined as LV rotation of each slice with respect to that of the most basal slice, was not significantly changed by CRT. CRT did not significantly change the LV torsion rate. There was no significant circumferential regional heterogeneity (anterior, lateral, inferior, and septal) in LV rotation mechanics in either left bundle branch block with pacing-induced heart failure or CRT, but there was significant apex-to-base regional heterogeneity.


CRT acutely improves hemodynamic parameters without improving LV rotation mechanics. There is no significant circumferential regional heterogeneity of LV rotation mechanics in the mechanically dyssynchronous heart. These results suggest that LV rotation mechanics is an index of global LV function, which requires coordination of all regions of the left ventricle, and improvement in LV rotation mechanics appears to be a specific but insensitive index of acute hemodynamic response to CRT.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility