Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by D Li
Total Records ( 12 ) for D Li
  J Wang , J Chen , P Chang , A LeBlanc , D Li , J. L Abbruzzesse , M. L Frazier , A. M Killary and S. Sen

Development of minimally invasive biomarker assays for early detection and effective clinical management of pancreatic cancer is urgently needed to reduce high morbidity and mortality associated with this malignancy. We hypothesized that if aberrantly expressing microRNAs (miRNA) in pancreatic adenocarcinoma tissues are detected in blood plasma, then plasma profiling of these miRNAs might serve as a minimally invasive early detection biomarker assay for this malignancy. By using a modified protocol to isolate and quantify plasma miRNAs from heparin-treated blood, we show that miRNA profiling in plasma can differentiate pancreatic adenocarcinoma patients from healthy controls. We have profiled four miRNAs, miR-21, miR-210, miR-155, and miR-196a, all implicated in the development of pancreatic cancer with either proven or predicted target genes involved in critical cancer-associated cellular pathways. Of these, miR-155 has recently been identified as a candidate biomarker of early pancreatic neoplasia, whereas elevated expression of miR196a has been shown to parallel progression of disease. The results revealed a sensitivity of 64% and a specificity of 89% with the analyses of plasma levels for this panel of four miRNAs. The area under the receiver operating characteristic curve were estimated at 0.82 and 0.78 without and with leave-one-out cross-validation scheme, respectively. These observations, although a "proof of principle" finding at this time, show the feasibility of developing plasma miRNA profiling as a sensitive and specific blood-based biomarker assay for pancreatic cancer that has the potential of translation to the clinic with additional improvements in the future.

  N Shrivastav , D Li and J. M. Essigmann

The reaction of DNA-damaging agents with the genome results in a plethora of lesions, commonly referred to as adducts. Adducts may cause DNA to mutate, they may represent the chemical precursors of lethal events and they can disrupt expression of genes. Determination of which adduct is responsible for each of these biological endpoints is difficult, but this task has been accomplished for some carcinogenic DNA-damaging agents. Here, we describe the respective contributions of specific DNA lesions to the biological effects of low molecular weight alkylating agents.

  L Zhang , T Deng , X Li , H Liu , H Zhou , J Ma , M Wu , M Zhou , S Shen , Z Niu , W Zhang , L Shi , B Xiang , J Lu , L Wang , D Li , H Tang and G. Li

microRNAs (miRNAs) are small non-coding RNAs and have been implicated in the pathology of various diseases, including cancer. Here we report that the miRNA profiles have been changed after knockdown of one of the most important oncogene c-MYC or re-expression of a candidate tumor suppressor gene SPLUNC1 in nasopharyngeal carcinoma (NPC) cells. Both c-MYC knockdown and SPLUNC1 re-expression can down-regulate microRNA-141 (miR-141). miR-141 is up-regulated in NPC specimens in comparison with normal nasopharyngeal epithelium. Inhibition of miR-141 could affect cell cycle, apoptosis, cell growth, migration and invasion in NPC cells. We found that BRD3, UBAP1 and PTEN are potential targets of miR-141, which had been confirmed following luciferase reporter assays and western blotting. BRD3 and UBAP1 are both involved in NPC carcinogenesis as confirmed through our previous studies and PTEN is a crucial tumor suppressor in many tumor types. BRD3 is involved in the regulation of the Rb/E2F pathway. Inhibition of miR-141 could affect some important molecules in the Rb/E2F, JNK2 and AKT pathways. It is well known that carcinogenesis of NPC is involved in the networks of genetic and epigenetic alteration events. We propose that miR-141- and tumor-related genes c-MYC, SPLUNC1, BRD3, UBAP1 and PTEN may constitute a gene–miRNA network to contribute to NPC development.

  Y Dong , B Lu , X Zhang , J Zhang , L Lai , D Li , Y Wu , Y Song , J Luo , X Pang , Z Yi and M. Liu

Cucurbitacin E (CuE, -elaterin), a tetracyclic triterpenes compound from folk traditional Chinese medicine plants, has been shown to inhibit cancer cell growth, inflammatory response and bilirubin–albumin binding. However, the effects of CuE on tumor angiogenesis and its potential molecular mechanism are still unknown. Here, we demonstrated that CuE significantly inhibited human umbilical vascular endothelial cell (HUVEC) proliferation, migration and tubulogenesis in vitro and blocked angiogenesis in chick embryo chorioallantoic membrane assay and mouse corneal angiogenesis model in vivo. Furthermore, we found that CuE remarkably induced HUVEC apoptosis, inhibited tumor angiogenesis and suppressed human prostate tumor growth in xenograft tumor model. Finally, we showed that CuE blocked vascular endothelial growth factor receptor (VEGFR) 2-mediated Janus kinase (Jak) 2–signal transducer and activator of transcription (STAT) 3 signaling pathway in endothelial cells and suppressed the downstream protein kinases, such as extracellular signal-regulated kinase and p38 mitogen-activated protein kinases. Therefore, our studies provided the first evidence that CuE inhibited tumor angiogenesis by inhibiting VEGFR2-mediated Jak–STAT3 and mitogen-activated protein kinases signaling pathways and CuE is a potential candidate in angiogenesis-related disease therapy.

  C Pasero , K Puntillo , D Li , R. A Mularski , M. J Grap , B. L Erstad , B Varkey , H. C Gilbert , J Medina and C. N. Sessler

Pain in patients who are critically ill remains undertreated despite decades of research, guideline development and distribution, and intense educational efforts. By nature of their complex medical conditions, these patients present unique challenges to the delivery of optimal pain treatment. Outdated clinical practices and faulty systems, such as a formulary that allows dangerous prescriptions, present additional obstacles. A multidisciplinary and patient-centered continuous quality improvement process is essential to identifying barriers and implementing evidence-based solutions to the problem of undertreated pain in hospital ICUs. This article addresses barriers common to the ICU setting and presents a number of structured approaches that have been shown to be successful in improving pain treatment in patients who are critically ill.

  R. E Hershberger , J. R Pinto , S. B Parks , J. D Kushner , D Li , S Ludwigsen , J Cowan , A Morales , M. S Parvatiyar and J. D. Potter

Background— A key issue for cardiovascular genetic medicine is ascertaining if a putative mutation indeed causes dilated cardiomyopathy (DCM). This is critically important as genetic DCM, usually presenting with advanced, life-threatening disease, may be preventable with early intervention in relatives known to carry the mutation.

Methods and Results— We recently undertook bidirectional resequencing of TNNT2, the cardiac troponin T gene, in 313 probands with DCM. We identified 6 TNNT2 protein-altering variants in 9 probands, all who had early onset, aggressive disease. Additional family members of mutation carriers were then studied when available. Four of the 9 probands had DCM without a family history, and 5 probands had familial DCM. Only 1 mutation (Lys210del) could be attributed as definitively causative from previous reports. Four of the 5 missense mutations were novel (Arg134Gly, Arg151Cys, Arg159Gln, and Arg205Trp), and one was previously reported with hypertrophic cardiomyopathy (Glu244Asp). Based on the clinical, pedigree, and molecular genetic data, these 5 mutations were considered possibly or likely disease causing. To further clarify their potential pathophysiologic impact, we undertook functional studies of these mutations in cardiac myocytes reconstituted with mutant troponin T proteins. We observed decreased Ca2+ sensitivity of force development, a hallmark of DCM, in support of the conclusion that these mutations are disease causing.

Conclusions— We conclude that the combination of clinical, pedigree, molecular genetic, and functional data strengthen the interpretation of TNNT2 mutations in DCM.

  J Cowan , D Li , J Gonzalez Quintana , A Morales and R. E. Hershberger

Background— Mutations in the LMNA gene, encoding lamins A/C, represent a significant cause of dilated cardiomyopathy. We recently identified 18 protein-altering LMNA variants in a cohort of 324 unrelated patients with dilated cardiomyopathy. However, at least one family member with dilated cardiomyopathy in each of 6 pedigrees lacked the LMNA mutation (nonsegregation), whereas small sizes of 5 additional families precluded definitive determinations of segregation, raising questions regarding contributions by those variants to disease.

Methods and Results— We have consequently expressed, in COS7 cells, GFP-prelamin A (GFPLaA) fusion constructs incorporating the 6 variants in pedigrees with nonsegregation (R101P, A318T, R388H, R399C, S437Hfsx1, and R654X), the 4 variants in pedigrees with unknown segregation (R89L, R166P [in 2 families], I210S, R471H), and 3 additional missense variants (R190Q, E203K, and L215P) that segregated with disease. Confocal immunofluorescence microscopy was used to characterize GFP-lamin A localization and nuclear morphology. Abnormal phenotypes were observed for 10 of 13 (77%) variants (R89L, R101P, R166P, R190Q, E203K, I210S, L215P, R388H, S437Hfsx1, and R654X), including 4 of 6 showing nonsegregation and 3 of 4 with uncertain segregation. All 7 variants affecting coil 1B and the lamin A-only mutation, R654X, exhibited membrane-bound GFP-lamin A aggregates and nuclear shape abnormalities. Unexpectedly, R388H largely restricted GFP-lamin A to the cytoplasm. Equally unexpected were unique streaked aggregates with S437Hfsx1 and giant aggregates with both S437Hfsx1 and R654X.

Conclusions— This work expands the recognized spectrum of lamin A localization abnormalities in dilated cardiomyopathy. It also provides evidence supporting pathogenicity of 10 of 13 tested LMNA variants, including some with uncertain or nonsegregation.

  R. E Hershberger , N Norton , A Morales , D Li , J. D Siegfried and J. Gonzalez Quintana

Background— Rare variants in >30 genes have been shown to cause idiopathic or familial dilated cardiomyopathy (DCM), but the frequency of genetic causation remains poorly understood. We have previously resequenced 9 genes in a cohort of idiopathic or familial DCM probands for rare variants, and now we report resequencing results for 5 more genes with established relationships to DCM.

Methods and Results— Blood samples were collected, and DNA specimens were prepared from 312 patients, 181 with familial DCM and 131 with idiopathic DCM. Genomic DNA underwent bidirectional sequencing, and DNA of additional family members underwent analysis when a rare variant was identified. We identified rare variants in 34 probands (10.9% overall), including 29 unique protein-altering rare variants and 2 splicing variants that were absent in 246 control subjects (492 chromosomes). These variants were 12 MYBPC3 (myosin-binding protein C) in 13 (4.2%) probands, 8 MYH6 (-myosin heavy chain) in 10 (3.2%), 6 TPM1 (tropomyosin) in 6 (1.9%), 4 TNNC1 (cardiac troponin C) in 4 (1.3%), and 1 TNNI3 (cardiac troponin I) in 2 (0.6%). Variants were classified as likely or possibly disease causing in 13 and 20 probands, respectively (n=33; 10.6% overall). One MYH6 variant was classified as unlikely to be disease causing.

Conclusion— Rare variants in these 5 genes likely or possibly caused 10.6% of DCM in this cohort. When combined with our prior resequencing reports, 27% of DCM probands had possible or likely disease-causing variants identified.

  D Li , A. R Patel , A. L Klibanov , C. M Kramer , M Ruiz , B. Y Kang , J. L Mehta , G. A Beller , D. K Glover and C. H. Meyer

The oxidized low-density lipoprotein receptor (LDLR) LOX-1 plays a crucial role in atherosclerosis. We sought to detect and assess atherosclerotic plaque in vivo by using single-photon emission computed tomography/computed tomography and magnetic resonance imaging and a molecular probe targeted at LOX-1.

Methods and Results—

Apolipoprotein E–/– mice fed a Western diet and LDLR–/– and LDLR–/–/LOX-1–/– mice fed an atherogenic diet were used. Imaging probes consisted of liposomes decorated with anti–LOX-1 antibodies or nonspecific immunoglobulin G, 111indium or gadolinium, and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine fluorescence markers. In vivo imaging was performed 24 hours after intravenous injection (150 µL) of LOX-1 or nonspecific immunoglobulin G probes labeled with either 111indium (600 µCi) or gadolinium (0.075 mmol/kg), followed by aortic excision for phosphor imaging and Sudan IV staining, or fluorescence imaging and hematoxylin/eosin staining. The LOX-1 probe also colocalized with specific cell types, apoptosis, and matrix metalloproteinase-9 expression in frozen aortic sections. Single-photon emission computed tomography/computed tomography imaging of the LOX-1 probe showed aortic arch "hot spots" in apolipoprotein E–/– mice (n=8), confirmed by phosphor imaging. Magnetic resonance imaging showed significant Gd enhancement in atherosclerotic plaques in LDLR–/– mice with the LOX-1 (n=7) but not with the nonspecific immunoglobulin G (n=5) probe. No signal enhancement was observed in LDLR–/–/LOX-1–/– mice injected with the LOX-1 probe (n=5). These results were confirmed by ex vivo fluorescence imaging. The LOX-1 probe bound preferentially to the plaque shoulder, a region with vulnerable plaque features, including extensive LOX-1 expression, macrophage accumulation, apoptosis, and matrix metalloproteinase-9 expression.


LOX-1 can be used as a target for molecular imaging of atherosclerotic plaque in vivo. Furthermore, the LOX-1 imaging signal is associated with markers of rupture-prone atherosclerotic plaque.

  D Li , P Chen , A Shi , E Shakiba , R Gergerich and Y. Chen

Seven strains (G1 to G7) of soybean mosaic virus (SMV) and 3 resistance loci (Rsv1, Rsv3, and Rsv4) have been identified in soybean. The interaction of SMV strains and host resistance genes results in resistant (symptomless), susceptible (mosaic), or necrotic (leaf and stem necrosis) reactions. The necrotic reaction may be gene dosage dependent and influenced by temperature. Using a set of soybean isolines and hybrids containing homozygous or heterozygous alleles of rsv, Rsv1, Rsv1-n, Rsv3, or Rsv4, this study has explored the relationship of SMV-induced symptoms and resistance gene dosage at different temperatures. Results showed that SMV-inoculated plants carrying Rsv3 or Rsv4 were symptomless at both homozygous and heterozygous states at all temperature regimes. Threshold temperatures for symptoms changing from stem tip necrosis (STN) to mosaic were 30, 33, and 33 °C in G7-inoculated homozygous genotypes V94-3971(Rsv1) and PI 96983 (Rsv1) and G1-inoculated V262 (Rsv1-n), respectively. However, at the heterozygous state, threshold temperature was 30 °C in G7-inoculated V94-3971 x Essex F1 for the symptom change from STN to mosaic, 31 °C in G7-inoculated Essex x PI 96983 F1 from STN to mixture of necrosis and mosaic (N-M), and 32 °C in G1-inoculated V262 x Essex F1 from N-M to mosaic. Incomplete necrosis was observed in the heterozygous state in G1-inoculated V262 x Essex F1 and G7-inoculated PI 96983 x Essex F1 where necrotic and mosaic symptoms were mixed. High temperature (37 °C) tends to mask the expression of mosaic symptoms in both homozygous and heterozygous plants. STN expression in response to temperature was affected by resistance gene, gene dosage, host genetic background, and specific SMV strains. Thus, Rsv3 and Rsv4 are a better choice as source of genetic resistance for breeding SMV-resistant cultivars.

  C Tian , J Tan , X Wu , W Ye , X Liu , D Li and H. Yang

To describe the variation in bacterioplankton diversity within a large hypertrophic freshwater lake, as well as changes in the diversity that occurred with time, PCR- (denaturing gradient gel electrophoresis) DGGE was utilized to study water samples collected from Lake Taihu in China. To accomplish this, water samples were collected from different locations and during different months. The trophic status of these sampling sites ranged from eutrophic to hypertrophic. Cluster and multidimensional scaling analyses revealed that the temporal transition in the diversity of the bacterioplankton occurred primarily in response to a cyanobacterial bloom, and that all samples could be divided into normal-bloom, peak-bloom and winter period groups. Spatial differences in the bacterial diversity were also detected among the three sampling sites, with diversity being found to be strongly correlated with the gradient of the trophic status of the three sampling sites. In addition, these temporal and spatial changes could be characterized by several specific DGGE bands. The results were further analyzed by canonical correspondence analysis, which revealed that the bacterioplankton diversity of Lake Taihu was primarily associated with temperature, pH, total nitrogen (TN), total phosphorus (TP) and dissolved oxygen. Of these factors, TN and TP were only shown to be significant influencing factors at Wuxi, which had the highest trophic level.

  Y. C Wang , X. B Hu , F He , F Feng , L Wang , W Li , P Zhang , D Li , Z. S Jia , Y. M Liang and H. Han

Dendritic cells (DCs) are professional antigen presenting cells to initiate immune response against pathogens, but mechanisms controlling the maturation of DCs are unclear. Here we report that, in the absence of recombination signal binding protein-J (RBP-J, the transcription factor mediating Notch signaling), lipopolysaccharide-stimulated monocyte-derived DCs are arrested at a developmental stage with few dendrites, low major histocompatibility complex II (MHC II) expression, and reduced motility and antigen presentation ability. RBP-J null DCs had lower expression of CXCR4. Transduction with a CXCR4-expressing lentivirus rescued developmental arrest of RBP-J-deficient DCs. Activation of Notch signaling in DCs up-regulated CXCR4 expression and increased the outgrowth of dendrites and the expression of MHC II. These effects were abrogated by a CXCR4 inhibitor. Therefore, Notch signaling is essential for DCs to transit from a dendritelowMHC IIlow immature state into a dendritehighMHC IIhigh mature state, during the lipopolysaccharide-induced DC maturation, most likely through the up-regulation of CXCR4.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility