Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Charles S. Craik
Total Records ( 3 ) for Charles S. Craik
  Kelly N. DuBois , Marla Abodeely , Judy Sakanari , Charles S. Craik , Malinda Lee , James H. McKerrow and Mohammed Sajid
  Giardia lamblia is a protozoan parasite and the earliest branching clade of eukaryota. The Giardia life cycle alternates between an asexually replicating vegetative form and an infectious cyst form. Encystation and excystation are crucial processes for the survival and transmission of Giardia. Cysteine proteases in Giardia have been implicated in proteolytic processing events that enable the continuance of the life cycle throughout encystation and excystation. Using quantitative real-time PCR, the expression of twenty-seven clan CA cysteine protease genes in the Giardia genome was measured during both vegetative growth and encystation. Giardia cysteine protease 2 was the most highly expressed cysteine protease during both life cycle stages measured, with a dramatic expression increase during encystation. The mRNA transcript for Giardia cysteine protease 2 was 7-fold up-regulated during encystation and was greater than 3-fold higher than any other Giardia protease gene product. Recombinant Giardia cysteine protease 2 was expressed, purified, and biochemically characterized. The activity of the recombinant cysteine protease 2 protein was confirmed to be identical to the dominant cysteine protease activity found in G. lamblia lysates. Giardia cysteine protease 2 was co-localized with cyst wall protein in encystation-specific vesicles during encystation and processed cyst wall protein 2 to the size found in Giardia cyst walls. These data suggest that Giardia cysteine protease 2 is not only the major cysteine endoprotease expressed in Giardia, but is also central to the encystation process.
  Anthony J. O`Donoghue , Cathal S. Mahon , David H. Goetz , James M. O`Malley , Denise M. Gallagher , Min Zhou , Patrick G. Murray , Charles S. Craik and Maria G. Tuohy
  The thermophilic filamentous fungus Talaromyces emersonii secretes a variety of hydrolytic enzymes that are of interest for processing of biomass into fuel. Many carbohydrases have been isolated and characterized from this fungus, but no studies had been performed on peptidases. In this study, two acid-acting endopeptidases were isolated and characterized from the culture filtrate of T. emersonii. One of these enzymes was identified as a member of the recently classified glutamic peptidase family and was subsequently named T. emersonii glutamic peptidase 1 (TGP1). The second enzyme was identified as an aspartyl peptidase (PEP1). TGP1 was cloned and sequenced and shown to exhibit 64 and 47% protein identity to peptidases from Aspergillus niger and Scytalidium lignocolum, respectively. Substrate profiling of 16 peptides determined that TGP1 has broad specificity with a preference for large residues in the P1 site, particularly Met, Gln, Phe, Lys, Glu, and small amino acids at P1` such as Ala, Gly, Ser, or Thr. This enzyme efficiently cleaves an internally quenched fluorescent substrate containing the zymogen activation sequence (kcat/Km = 2 x 105 M-1 s-1). Maximum hydrolysis occurs at pH 3.4 and 50 °C. The reaction is strongly inhibited by a transition state peptide analog, TA1 (Ki = 1.5 nM), as well as a portion of the propeptide sequence, PT1 (Ki = 32 nM). Ex vivo studies show that hyphal extension of T. emersonii in complex media is unaffected by the aspartyl peptidase inhibitor pepstatin but is inhibited by TA1 and PT1. This study provides insight into the functional role of the glutamic peptidase TGP1 for growth of T. emersonii.
  Theresa C. O`Brien , Zachary B. Mackey , Richard D. Fetter , Youngchool Choe , Anthony J. O`Donoghue , Min Zhou , Charles S. Craik , Conor R. Caffrey and James H. McKerrow
  Cysteine proteases of the Clan CA (papain) family are the predominant protease group in primitive invertebrates. Cysteine protease inhibitors arrest infection by the protozoan parasite, Trypanosoma brucei. RNA interference studies implicated a cathepsin B-like protease, tbcatB, as a key inhibitor target. Utilizing parasites in which one of the two alleles of tbcatb has been deleted, the key role of this protease in degradation of endocytosed host proteins is delineated. TbcatB deficiency results in a decreased growth rate and dysmorphism of the flagellar pocket and the subjacent endocytic compartment. Western blot and microscopic analysis indicate that deficiency in tbcatB results in accumulation of both host and parasite proteins, including the lysosomal marker p67. A critical function for parasitism is the degradation of host transferrin, which is necessary for iron acquisition. Substrate specificity analysis of recombinant tbcatB revealed the optimal peptide cleavage sequences for the enzyme and these were confirmed experimentally using FRET-based substrates. Degradation of transferrin was validated by SDS-PAGE and the specific cleavage sites identified by N-terminal sequencing. Because even a modest deficiency in tbcatB is lethal for the parasite, tbcatB is a logical target for the development of new anti-trypanosomal chemotherapy.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility