Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by Ch. Anyakora
Total Records ( 2 ) for Ch. Anyakora
  M. Arbabi , M. Sadeghi and Ch. Anyakora
  Problem Statement: Polycyclic Aromatic Hydrocarbons (PAHs) are suspected toxins that accumulate in soils and sediments due to their insolubility in water and lack of volatility. Slurry-phase biological treatment is one of the innovative technologies that involve the controlled treatment of excavated soil in a bioreactor. Due to highly soil contamination from petroleum compounds in crude oil extraction and also oil refinery sites in Iran, this research was designed based on slurry phase biotreatment to find out a solution to decontamination of oil compounds polluted sites. Approach: Soil samples were collected from Tehran oil refinery site and Bushehr oil zones. Two compositions of soils (clay and silt) were selected for slurry biotreatment experiment. Soil samples were contaminated with three rates of phenanthrene (a 3 ring PAH), 100, 500 and 1000 mg kg -1 and mixed with distilled water in solid concentration of 30% by weight after washing out with strong solvent (hexane) and putting in to the oven. Bacterial consortium was revived in culture medium which consisted of Mineral Salt Medium (MSM) based on phenanthrene concentrations and ratio of C/N/P in the range of 100/10/2. Prepared soil samples were mixed with distilled water, nutrient and bacterial consortium together in the 250 mL glass Erlenmeyer and putted in the shaker incubator with 200 rpm revolutions and 25°C for 7 weeks (45 days). Samples were analyzed for residual phenanthrene, bacterial population every week. For statistical analysis, general linear model with repeated measures (type III) analysis was applied. Results: The concentration of 100 mg L-1 of phenanthrene in clayey and silty soils reached to non detectable limit after 5 and 6 weeks, respectively. While concentration of 500 mg L-1 of phenanthrene both in clayey and silty soils reached to non detectable limit after 6 weeks. But concentration of 1000 mg L-1 both in clayey and silty soil samples has not met this limitation after 7 weeks. Due to presence of Pseudomonas strains in clayey soil samples and their ability in breaking down of benzene rings, the removal efficiency of phenanthrene in our slurry bioreactor in clayey soil was a little more than silty soil samples over time. There was a significance relationship between initial concentrations of phenanthrene and type of soil with time of biotreatment (p<0.001). Conclusion: Therefore, this technology may be applied to remediation of small foot print oil contaminated sites, e.g., gas station, oil extraction and refinery sites in Iran, in the case of urgency. Thus this study concludes that the remediation of phenanthrene with concentration up to 1000 mg kg-1 in the oil contaminated sites can be removed to the acceptable limits using slurry based system.
  Ch. Anyakora , H. Coker and M. Arbabi
  Chemical fingerprinting is an aspect of environmental forensic investigation which involves chemical analysis of contaminants and associated chemicals to provide source specific information. Polynuclear Aromatic Hydrocarbons (PAHs) in the environment have 3 categories of sources namely petrogenic, pyrogenic and biogenic sources. Petrogenic PAHs are generated from geochemical alterations of organic mater. Pyrogenic PAHs originate when organic matter is incompletely combusted. Biogenic PAHs originate as a result of oxidation of microbial or plant derived compounds in older and deeper sediments. PAHs fingerprinting involves the determination of a number of quantitative diagnostic ratios of source specific marker PAH compounds. These quantitative diagnostic ratios may be used to distinguish petrogenic PAHs including phenanthrene/anthracene; benz(a)anthracene/chrysene; flouranthene/pyrene; phenanthrene/(phenanthrene+anthracene) and indeno(1,2,3-cd) pyrene/indeno (1,2,3-cd) pyrene + benzo (ghi) perylene from other sources. In this research over 40 environmental samples from the Niger Delta region were subjected to chemical fingerprinting employing some of the quantitative diagnostic ratios above with the aim of ascertaining the precise nature and source the contaminants. It was found that the PAHs contamination in the Niger Delta is not only emanating from petrogenic sources but other sources contribute significantly.
 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility