Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by C. W Cheng
Total Records ( 2 ) for C. W Cheng
  J. C Yu , S. l Ding , C. H Chang , S. H Kuo , S. T Chen , G. C Hsu , H. M Hsu , M. F Hou , L. Y Jung , C. W Cheng , P. E Wu and C. Y. Shen

Tumor levels of the cell cycle regulators cyclin E and p27 correlate strongly with survival in breast cancer patients and are specifically regulated by the ubiquitin ligases hCDC4 and SKP2. This study was to explore whether genetic susceptibility to breast cancer is associated with polymorphism of these genes and whether gene–gene and gene–risk factor [i.e. full-term pregnancy (FTP)] interactions are important in determining cancer risk. A two-stage case–control study based on single-nucleotide polymorphisms was performed. The first study (560 cases and 1122 controls) was to define the contribution of cell cycle and ubiquitin ligase genes to cancer susceptibility. The second study (926 cases and 923 controls) was to confirm the association identified in the first stage and to map the variant alleles. Increased breast cancer risk was associated with both polymorphism of hCDC4 and a joint effect of cyclin E and hCDC4. These associations were more significant in nulliparous women, and cancer risk associated with a lower number of FTPs was only seen in women with a higher number of high-risk genotypes, providing support for an effect of gene–risk factor interaction in determining susceptibility. Sequence variants of intron 2 in hCDC4 were found to be the most significant polymorphism and high-stage estrogen receptor (ER)-negative patients carrying the homozygous variant genotype manifested significantly poorer survival. This study concludes that polymorphism of hCDC4 is a risk factor for breast cancer development by interacting with either cyclin E or FTP and may also prove useful in predicting progression of patients with high-stage and ER-negative breast cancers.

  N. M Mokhtar , C. w Cheng , E Cook , H Bielby , S. K Smith and D. S. Charnock Jones

Leukocyte populations change profoundly in the human endometrium during the menstrual cycle. However the predominant cell, the uterine natural killer (uNK) cell does not contain steroid receptors. From gene array analysis we identified a transcript encoding chemokine (C-X-C motif) ligand 14 (CXCL14) which is markedly up-regulated in the secretory phase of the cycle. We confirm this data by northern blotting and quantitative PCR. Using in situ hybridization we localized CXCL14 mRNA to the glandular epithelial cells where it was detected only in the secretory phase of the cycle. Candidate progesterone response elements were identified at positions -2028/-2007 and -722/-697 (PRE1 and PRE2, respectively) relative to the translation start site. These were functionally tested using luciferase reporter deletion constructs, electrophoretic mobility shift assays and site-directed mutagenesis. The deletion/mutation of these sites reduced progesterone induction by 40 and 20%, respectively. Finally, we demonstrated that recombinant CXCL14 stimulated uNK cell chemotaxis in vitro. We therefore conclude that CXCL14 is likely to be regulated by progesterone in human endometrium and that it may exert a chemoattractive effect on uNK cells and in part be responsible for their clustering around the epithelial glands.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility