Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by C. R Williams
Total Records ( 3 ) for C. R Williams
  K Liby , R Risingsong , D. B Royce , C. R Williams , T Ma , M. M Yore and M. B. Sporn
 

We tested members of two noncytotoxic classes of drugs, synthetic oleanane triterpenoids and rexinoids, both as individual agents and in combination, for the prevention and treatment of carcinogenesis in a highly relevant animal model of lung cancer. Lung adenocarcinomas were induced in A/J mice by injection of the carcinogen vinyl carbamate. Mice were fed drugs in diet, beginning 1 week after the carcinogen challenge for prevention or 8 weeks later for treatment. The number, size, and severity of tumors in the lungs were then evaluated. In the prevention studies, the triterpenoids CDDO-ethyl amide and CDDO-methyl ester reduced the average tumor burden (ATB) in the lungs 86% to 92%, respectively, compared with the controls, and the rexinoid LG100268 (268) reduced ATB by 50%. The combination of CDDO-ethyl amide and 268 reduced ATB by 93%. We show for the first time that these drugs also were highly effective for treatment of experimental lung cancer, and all triterpenoid and rexinoid combinations reduced ATB 85% to 87% compared with the control group. The triterpenoids also potently inhibited proliferation of VC1 mouse lung carcinoma cells and directly interacted with key regulatory proteins in these cells. In contrast, the rexinoids had little antiproliferative activity in VC1 cells but were potent inhibitors of the toll-like receptor pathway in macrophage-like cells. Triterpenoids and rexinoids are multifunctional, well-tolerated drugs that target different signaling pathways and are thus highly effective for prevention and treatment of experimental lung cancer.

  K. T Liby , D. B Royce , R Risingsong , C. R Williams , A Maitra , R. H Hruban and M. B. Sporn
 

Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and is nearly always fatal. Whereas early detection offers the most promising approach for reducing the mortality of this disease, there is still a need to develop effective drugs for the prevention and treatment of pancreatic cancer. We tested two promising classes of noncytotoxic drugs, synthetic oleanane triterpenoids and rexinoids, for the prevention of carcinogenesis in the highly relevant LSL-KrasG12D/+;LSL-Trp53R127H/+;Pdx-1-Cre (KPC) mouse model of pancreatic cancer. KPC transgenic mice closely recapitulate the genetic mutations, clinical symptoms, and histopathology found in human pancreatic cancer. Beginning at 4 weeks of age, mice were fed powdered control diet or a diet containing the triterpenoids CDDO-methyl ester (CDDO-Me) or CDDO-ethyl amide, the rexinoid LG100268 (LG268), or the combination, until the mice displayed overt symptoms of pancreatic cancer. CDDO-Me, LG268, the combination of CDDO-Me and LG268, and the combination of CDDO-ethyl amide and LG268, all significantly (P < 0.05) increased survival in the KPC mice by 3 to 4 weeks. Recent studies have shown that gemcitabine, the current standard of care for human pancreatic cancer, does not extend survival in KPC mice. In cell lines developed from the KPC mice, the triterpenoids directly interact with both signal transducer and activator of transcription 3 and IB kinase (IKK) to decrease constitutive interleukin-6 secretion, inhibit constitutive signal transducer and activator of transcription 3 phosphorylation, and block the degradation of IB when challenged with tumor necrosis factor . These results suggest that oleanane triterpenoids and rexinoids have the potential to prevent pancreatic cancer. Cancer Prev Res; 3(11); 1427–34. ©2010 AACR.

  M. S Yates , Q. T Tran , P. M Dolan , W. O Osburn , S Shin , C. C McCulloch , J. B Silkworth , K Taguchi , M Yamamoto , C. R Williams , K. T Liby , M. B Sporn , T. R Sutter and T. W. Kensler
 

Loss of NF-E2-related factor 2 (Nrf2) signaling increases susceptibility to acute toxicity, inflammation and carcinogenesis in mice due to the inability to mount adaptive responses. In contrast, disruption of Keap1 (a cytoplasmic modifier of Nrf2 turnover) protects against these stresses in mice, although inactivating mutations in Keap1 have been identified recently in some human cancers. Global characterization of Nrf2 activation is important to exploit this pathway for chemoprevention in healthy, yet at-risk individuals and also to elucidate the consequences of hijacking the pathway in Keap1-mutant human cancers. Liver-targeted conditional Keap1-null, Albumin-Cre:Keap1(flox/–) (CKO) mice provide a model of genetic activation of Nrf2 signaling. By coupling global gene expression analysis of CKO mice with analysis of pharmacologic activation using the synthetic oleanane triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), we are able to gain insight into pathways affected by Nrf2 activation. CDDO-Im is an extremely potent activator of Nrf2 signaling. CKO mice were used to identify genes modulated by genetic activation of Nrf2 signaling. The CKO response was compared with hepatic global gene expression changes in wild-type mice treated with CDDO-Im at a maximal Nrf2 activating dose. The results show that genetic and pharmacologic activation of Nrf2 signaling modulates pathways beyond detoxication and cytoprotection, with the largest cluster of genes associated with lipid metabolism. Genetic activation of Nrf2 results in much larger numbers of detoxication and lipid metabolism gene changes. Additionally, analysis of pharmacologic activation suggests that Nrf2 is the primary mediator of CDDO-Im activity, though other cell-signaling targets are also modulated following an oral dose of 30 µmol/kg.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility