Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by C. L Lin
Total Records ( 2 ) for C. L Lin
  C. C Tsai , C. L Lin , T. L Wang , A. C Chou , M. Y Chou , C. H Lee , I W Peng , J. H Liao , Y. T Chen and C. Y. Pan

Vesicle recycling is vital for maintaining membrane homeostasis and neurotransmitter release. Multiple pathways for retrieving vesicles fused to the plasma membrane have been reported in neuroendocrine cells. Dynasore, a dynamin GTPase inhibitor, has been shown to specifically inhibit endocytosis and vesicle recycling in nerve terminals. To characterize its effects in modulating vesicle recycling and repetitive exocytosis, changes in the whole cell membrane capacitance of bovine chromaffin cells were recorded in the perforated-patch configuration. Constitutive endocytosis was blocked by dynasore treatment, as shown by an increase in membrane capacitance. The membrane capacitance was increased during strong depolarizations and declined within 30 s to a value lower than the prestimulus level. The amplitude, but not the time constant, of the rapid exponential decay was significantly decreased by dynasore treatment. Although the maximal increase in capacitance induced by stimulation was significantly increased by dynasore treatment, the intercepts at time 0 of the curve fitted to the decay phase were all ~110% of the membrane capacitance before stimulation, regardless of the dynasore concentration used. Membrane depolarization caused clathrin aggregation and F-actin continuity disruption at the cell boundary, whereas dynasore treatment induced clathrin aggregation without affecting F-actin continuity. The number of invagination pits on the surface of the plasma membrane determined using atomic force microscopy was increased and the pore was wider in dynasore-treated cells. Our data indicate that dynamin-mediated endocytosis is the main pathway responsible for rapid compensatory endocytosis.

  A. R Lambert , C. L Lin , E Mardorf and P. O'shaughnessy

This study examines the usage of computational fluid dynamics (CFDs) for estimating the time-elapsed decay of contaminants within a chamber experiencing high Reynolds flow. CFD results were compared with measurements taken at a controlled facility. In addition, parameters of the CFD simulation were examined; namely the effects of turbulence and inertial transport at high Reynolds number ventilating flows, as well as inlet duct configuration and its effect on the inlet velocity profile. The agreement between the computational and experimental clearance times was quite good, with percent errors as low as –5.32% at high flow rate and –11.8% at the lower flow rate. This study determined that for high Reynolds flow, diffusive transport effects may be ignored as the majority of mass is transported via the bulk stream, i.e. momentum transport. In addition, resolving the inlet velocity profile was of prime importance for accurate simulation of ventilating flows and prediction of contaminant washout. This was done by including the inlet duct geometry in the computational domain. In addition, it was found that despite different flow rates, the predicted contaminant washout took ~12–13% longer than predicted assuming instantaneous mixing. Furthermore, percent error between computational and experimental data as low as –5.32% shows that CFD is a useful tool for studying ventilation phenomena.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility