Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by C. E Schwartz
Total Records ( 3 ) for C. E Schwartz
  C. E Schwartz , P. S Kunwar , D. N Greve , L. R Moran , J. C Viner , J. M Covino , J Kagan , S. E Stewart , N. C Snidman , M. G Vangel and S. R. Wallace

Context  The term temperament refers to a biologically based predilection for a distinctive pattern of emotions, cognitions, and behaviors first observed in infancy or early childhood. High-reactive infants are characterized at age 4 months by vigorous motor activity and crying in response to unfamiliar visual, auditory, and olfactory stimuli, whereas low-reactive infants show low motor activity and low vocal distress to the same stimuli. High-reactive infants are biased to become behaviorally inhibited in the second year of life, defined by timidity with unfamiliar people, objects, and situations. In contrast, low-reactive infants are biased to develop into uninhibited children who spontaneously approach novel situations.

Objective  To examine whether differences in the structure of the ventromedial or orbitofrontal cerebral cortex at age 18 years are associated with high or low reactivity at 4 months of age.

Design  Structural magnetic resonance imaging in a cohort of 18-year-olds enrolled in a longitudinal study. Temperament was determined at 4 months of age by direct observation in the laboratory.

Setting  Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital.

Participants  Seventy-six subjects who were high-reactive or low-reactive infants at 4 months of age.

Main Outcome Measure  Cortical thickness.

Results  Adults with a low-reactive infant temperament, compared with those categorized as high reactive, showed greater thickness in the left orbitofrontal cortex. Subjects categorized as high reactive in infancy, compared with those previously categorized as low reactive, showed greater thickness in the right ventromedial prefrontal cortex.

Conclusions  To our knowledge, this is the first demonstration that temperamental differences measured at 4 months of age have implications for the architecture of human cerebral cortex lasting into adulthood. Understanding the developmental mechanisms that shape these differences may offer new ways to understand mood and anxiety disorders as well as the formation of adult personality.

  J. Y Garbern , M Neumann , J. Q Trojanowski , V. M. Y Lee , G Feldman , J. W Norris , M. J Friez , C. E Schwartz , R Stevenson and A. A. F. Sima

We have studied a family with severe mental retardation characterized by the virtual absence of speech, autism spectrum disorder, epilepsy, late-onset ataxia, weakness and dystonia. Post-mortem examination of two males revealed widespread neuronal loss, with the most striking finding being neuronal and glial tau deposition in a pattern reminiscent of corticobasal degeneration. Electron microscopic examination of isolated tau filaments demonstrated paired helical filaments and ribbon-like structures. Biochemical studies of tau demonstrated a preponderance of 4R tau isoforms. The phenotype was linked to Xq26.3, and further analysis identified an in-frame 9 base pair deletion in the solute carrier family 9, isoform A6 (SLC9A6 gene), which encodes sodium/hydrogen exchanger-6 localized to endosomal vesicles. Sodium/hydrogen exchanger-6 is thought to participate in the targeting of intracellular vesicles and may be involved in recycling synaptic vesicles. The striking tau deposition in our subjects reveals a probable interaction between sodium/proton exchangers and cytoskeletal elements involved in vesicular transport, and raises the possibility that abnormalities of vesicular targeting may play an important role in more common disorders such as Alzheimer’s disease and autism spectrum disorders.

  H. C Mefford , G. M Cooper , T Zerr , J. D Smith , C Baker , N Shafer , E. C Thorland , C Skinner , C. E Schwartz , D. A Nickerson and E. E. Eichler

Copy-number variants (CNVs) are substantial contributors to human disease. A central challenge in CNV-disease association studies is to characterize the pathogenicity of rare and possibly incompletely penetrant events, which requires the accurate detection of rare CNVs in large numbers of individuals. Cost and throughput issues limit our ability to perform these studies. We have adapted the Illumina BeadXpress SNP genotyping assay and developed an algorithm, SNP-Conditional OUTlier detection (SCOUT), to rapidly and accurately detect both rare and common CNVs in large cohorts. This approach is customizable, cost effective, highly parallelized, and largely automated. We applied this method to screen 69 loci in 1105 children with unexplained intellectual disability, identifying pathogenic variants in 3.1% of these individuals and potentially pathogenic variants in an additional 2.3%. We identified seven individuals (0.7%) with a deletion of 16p11.2, which has been previously associated with autism. Our results widen the phenotypic spectrum of these deletions to include intellectual disability without autism. We also detected 1.65–3.4 Mbp duplications at 16p13.11 in 1.1% of affected individuals and 350 kbp deletions at 15q11.2, near the Prader-Willi/Angelman syndrome critical region, in 0.8% of affected individuals. Compared to published CNVs in controls they are significantly (P = 4.7 x 10–5 and 0.003, respectively) enriched in these children, supporting previously published hypotheses that they are neurocognitive disease risk factors. More generally, this approach offers a previously unavailable balance between customization, cost, and throughput for analysis of CNVs and should prove valuable for targeted CNV detection in both research and diagnostic settings.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility