Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by C Sun
Total Records ( 2 ) for C Sun
  C Sun , M Xu , Z Xing , Z Wu , Y Li , T Li and M. Zhao

Lissencephaly is a severe disease characterized by brain malformation. The main causative gene of lissencephaly is LIS1. Mutation or deletion of LIS1 leads to proliferation and migration deficiency of neurons in brain development. However, little is known about its biological function in embryonic development. In this article, we identified the expression patterns of zebrafish LIS1 gene and investigated its function in embryonic development. We demonstrated that zebrafish consisted of two LIS1 genes, LIS1a and LIS1b. Bioinformatics analysis revealed that LIS1 genes were conserved in evolution both in protein sequences and genomic structures. The expression patterns of zebrafish LIS1a and LIS1b showed that both transcripts were ubiquitously expressed at all embryonic developmental stages and in adult tissues examined. At the protein level, the LIS1 products mainly exist in brain tissue and in embryos at early stages as shown by western blotting analysis. The whole-mount immunostaining data showed that LIS1 proteins were distributed all over the embryos from 1-cell stage to 5 day post-fertilization. Knockdown of LIS1 protein expression through morpholino antisense oligonucleotides resulted in many developmental deficiencies in zebrafish, including brain malformation, circulation abnormality, and body curl. Taken together, our study suggested that zebrafish LIS1 plays a very important role in embryonic development.

  C Sun , J Zubcevic , J. W Polson , J. T Potts , C Diez Freire , Q Zhang , J. F.R Paton and M. K. Raizada

Rationale: Central angiotensin (Ang) II inhibits baroreflex and plays an important role in the pathogenesis of hypertension. However, the underlying molecular mechanisms are still not fully understood.

Objective: Our objective in the present study was to characterize the signal transduction mechanism of phosphatidylinositol 3-kinase (PI3K) involvement in Ang II–induced stimulation of central neuronal activity in cultured neurons and Ang II–induced inhibition of baroreflex in spontaneously hypertensive rats (SHR) versus WKY rats.

Methods and Results: Application of Ang II to neurons produced a 42% greater increase in neuronal firing in cells from the SHR than the WKY rat. Although the Ang II–mediated increase in firing rate was abolished entirely by the protein kinase (PK)C inhibitor GF109230 in the WKY, blockade of both PKC and PI3K activity was necessary in the SHR. This was associated with an increased ability of Ang II to stimulate NADPH oxidase–reactive oxygen species (ROS)–mediated signaling involving phosphorylation of the p47phox subunit of the NADPH oxidase and was dependent on the activation of PI3K in the SHR. Inhibition of PI3K resulted in the reduction of levels of p47phox phosphorylation, NADPH oxidase activity, ROS levels, and ultimately neuronal activity in cells from the SHR but not the WKY rat. In addition, in working heart–brainstem preparations, inhibition of PKC activity in the nucleus of the solitary tract in situ abolished the Ang II–mediated depression of cardiac and sympathetic baroreceptor reflex gain in the WKY. In contrast, PKC inhibition in the nucleus of the solitary tract of SHR only partially reduced the effect of Ang II on the baroreceptor reflex gain.

Conclusions: These observations demonstrate that PI3K in the cardiovascular brainstem regions of the SHR may be selectively involved in Ang II–mediated signaling that includes a reduction in baroreceptor reflex function, presumably via a NADPH-ROS mediated pathway.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility