Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
 
Articles by C McKimmey
Total Records ( 1 ) for C McKimmey
  X Yang , S Yang , C McKimmey , B Liu , S. M Edgerton , W Bales , L. T Archer and A. D. Thor
 

Genistein is a major isoflavone with known hormonal and tyrosine kinase-modulating activities. Genistein has been shown to promote the growth of estrogen receptor positive (ER+) MCF-7 cells. In ER-negative (ER–)/erbB-2-overexpressing (erbB-2+) cells, genistein has been shown to inhibit cell growth through its tyrosine kinase inhibitor activity. The effects of genistein on cell growth and tamoxifen response in ER+/erbB-2-altered breast cancers (known as luminal type B and noted in ~10 to 20% of breast cancers) have not been well explored. Using erbB-2-transfected ER+ MCF-7 cells, we found that genistein induced enhanced cellular proliferation and tamoxifen resistance when compared with control MCF-7 cells. These responses were accompanied by increased phosphorylation of ER and ER signaling, without increase in ER protein levels. Genistein-treated MCF-7/erbB-2 cells also showed enhanced activation/phosphorylation of erbB-2, Akt and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase. Blockade of the phosphatidylinositol 3-kinase and/or MAPK pathways abrogated genistein-induced growth promotion, suggesting that genistein effects involve both critical signaling pathways. We also found that p27/kip1 was markedly downregulated in genistein-treated MCF-7/erbB-2 cells. Overexpression of p27/kip1 attenuated genistein-mediated growth promotion. In aggregate, our data suggest that the concomitant coexpression of ER and erbB-2 makes breast cancers particularly susceptible to the growth-promoting effects of genistein across a wide range of doses. The underlying mechanisms involve enhanced ER–erbB-2 cross talk and p27/kip1 downregulation.

 
 
 
Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility