Asian Science Citation Index is committed to provide an authoritative, trusted and significant information by the coverage of the most important and influential journals to meet the needs of the global scientific community.  
ASCI Database
308-Lasani Town,
Sargodha Road,
Faisalabad, Pakistan
Fax: +92-41-8815544
Contact Via Web
Suggest a Journal
Articles by C Liu
Total Records ( 11 ) for C Liu
  K Dong , Q Li , C Liu , Y Zhang , G Zhao and X. Guo

Motility and chemotaxis systems are critical for the virulence of leptospires. There were multiple copies of putative chemotaxis homologs located at leptospires large chromosome. CheB1 and CheB3 from Leptospira interrogans strain Lai are predicted to have a global CheB-like domain, but CheB2 is predicted to have a C-terminal effector domain only. In order to verify the function of three putative cheB genes, they were cloned into pQE31 vector and then expressed, respectively, in wild-type Escherichia coli strain RP437 and cheB defective strain RP4972. The results of swarming assays and the predicted ternary structures of CheB1 and CheB3 of L. interrogans strain Lai suggested that the absence of an N-terminal regulatory domain may be one of the reasons for the failure of CheB2 to complement an E. coli cheB mutant. Furthermore, CheB2 links solely to CheR1 and CheR3 in the interaction network of leptospires. Taken together, these results indicated that CheB2 may not function alone, and under certain physiological conditions, it may require CheB3 and CheR1 to function. The existence of multiple copies of chemotaxis gene homologs suggested that L. interrogans strain Lai might have a more complex chemosensory pathway.

  I. M Smith , S. K Mithani , C Liu , S. S Chang , S Begum , M Dhara , W Westra , D Sidranksy and J. A. Califano

Objective  To find head and neck squamous cell carcinoma (HNSCC) specific genetic changes using integrative genetics.

Design  Genetic analysis.

Patients  Three separate cohorts of patients with primary HNSCC were evaluated for expression-microarray of 33 000 genes (8 patients), quantitative real-time polymerase chain reaction (qRT-PCR) (36 patients), and quantitative DNA/qRT-PCR (12 patients). Controls with normal upper-aerodigestive mucosa were evaluated for expression microarray (6 patients) and qRT-PCR (7 patients).

Interventions  We utilized (1) prior reports of DNA loss and gain HNSCC accompanied by comparative genomic hybridization high-definition array data of the entire human genome, (2) a genome-wide survey of cancer-specific DNA mutations from the consensus cancer coding sequence (13 023 genes), and (3) our RNA expression microarray data of 33 000 genes to define candidate oncogenes activated by amplification or candidate tumor suppressor genes inactivated by deletion.

Main Outcome Measures  Gene expression in tissue measured by quantitative reverse transcriptase PCR. Gene copy number was measured by quantitative PCR.

Results  We found 20 genes that were in areas of demonstrated amplification or deletion overlapping with the somatic mutants from genome-wide screening of the consensus DNA cancer coding sequence reported by Sjöblom et al. Three were chosen for further study based on expression differences and proof of cancer causation from in silico study: RUNX1T1, RFC4, and DLEC1. From 12 patients with HNSCC, matched tumor DNA/RNA and leukocyte-derived DNA were studied. Six of 12 (50%) of the tumors demonstrated amplification of the RUNX1T1 locus (P = .01), and 4 of those 6 (67%) demonstrated upregulated transcription of this gene (P = .02). Five of 12 (42%) of the tumors demonstrated amplification of the RFC4 locus (P = .03), and 1 of those 5 (20%) demonstrated upregulated messenger RNA (mRNA) transcription of the gene (P = .60). Four of 12 of the tumors (33%) (P = .05) demonstrated deletion in the DLEC locus (consistent with previously published 3p22 loss of 40%), and 3 of those 4 (75%) demonstrated reductions in mRNA expression (P = .06).

Conclusion  With the advent of high-throughput techniques to study cancer genetics, novel comparisons of large data sets using integrative methods may elucidate genetic alterations in HNSCC cancer.

  X Ma , K Takeda , A Singh , Z. X Yu , P Zerfas , A Blount , C Liu , J. A Towbin , M. D Schneider , R. S Adelstein and Q. Wei

Rationale: Germline ablation of the cytoskeletal protein nonmuscle myosin II (NMII)-B results in embryonic lethality, with defects in both the brain and heart. Tissue-specific ablation of NMII-B by a Cre recombinase strategy should prevent embryonic lethality and permit study of the function of NMII-B in adult hearts.

Objective: We sought to understand the function of NMII-B in adult mouse hearts and to see whether the brain defects found in germline-ablated mice influence cardiac development.

Methods and Results: We used a loxP/Cre recombinase strategy to specifically ablate NMII-B in the brains or hearts of mice. Mice ablated for NMII-B in neural tissues die between postnatal day 12 and 22 without showing cardiac defects. Mice deficient in NMII-B only in cardiac myocytes (BMHC/BMHC mice) do not show brain defects. However, BMHC/BMHC mice display novel cardiac defects not seen in NMII-B germline-ablated mice. Most of the BMHC/BMHC mice are born with enlarged cardiac myocytes, some of which are multinucleated, reflecting a defect in cytokinesis. Between 6 to 10 months, they develop a cardiomyopathy that includes interstitial fibrosis and infiltration of the myocardium and pericardium with inflammatory cells. Four of 5 BMHC/BMHC hearts develop marked widening of intercalated discs.

Conclusions: By avoiding the embryonic lethality found in germline-ablated mice, we were able to study the function of NMII-B in adult mice and show that absence of NMII-B in cardiac myocytes results in cardiomyopathy in the adult heart. We also define a role for NMII-B in maintaining the integrity of intercalated discs.

  S Wang , M Zhang , B Liang , J Xu , Z Xie , C Liu , B Viollet , D Yan and M. H. Zou

Rational: AMP-activated protein kinase (AMPK) is an energy sensor and ubiquitously expressed in vascular cells. Recent studies suggest that AMPK activation improves endothelial function by counteracting oxidative stress in endothelial cells. How AMPK suppresses oxidative stress remains to be established.

Objective: The aim of this study is to examine the effects of AMPK in regulating NAD(P)H oxidase, oxidative stress, and endothelial function.

Methods and Results: The markers of oxidative stress, NAD(P)H oxidase subunit expression (gp91phox, p47phox, p67phox, NOX1 to -4), NAD(P)H oxidase–mediated superoxide production, 26S proteasome activity, IB degradation, and nuclear translocation of nuclear factor (NF)-B (p50 and p65) were examined in cultured human umbilical vein endothelial cells and mouse aortas isolated from AMPK2 deficient mice. Compared to the wild type, acetylcholine-induced endothelium-dependent relaxation was significantly impaired in parallel with increased production of oxidants in AMPK2–/– mice. Further, pretreatment of aorta with either superoxide dismutase (SOD) or tempol or apocynin significantly improved acetylcholine-induced endothelium-dependent relaxation in AMPK2–/– mice. Analysis of aortic endothelial cells from AMPK2–/– mice and human umbilical vein endothelial cells expressing dominant negative AMPK or AMPK2-specific siRNA revealed that loss of AMPK activity increased NAD(P)H oxidase subunit expression (gp91phox, p47phox, p67phox, NOX1 and -4), NAD(P)H oxidase–mediated superoxide production, 26S proteasome activity, IB degradation, and nuclear translocation of NF-B (p50 and p65), whereas AMPK activation by AICAR or overexpression of constitutively active AMPK had the opposite effect. Consistently, we found that genetic deletion of AMPK2 in low-density lipoprotein receptor knockout (LDLr–/–) strain markedly increased 26S proteasome activity, IB degradation, NF-B transactivation, NAD(P)H oxidase subunit overexpression, oxidative stress, and endothelial dysfunction, all of which were largely suppressed by chronic administration of MG132, a potent cell permeable proteasome inhibitor.

Conclusions: We conclude that AMPK2 functions as a physiological suppressor of NAD(P)H oxidase and ROS production in endothelial cells. In this way, AMPK maintains the nonatherogenic and noninflammatory phenotype of endothelial cells.

  R Bhandare , J Schug , J Le Lay , A Fox , O Smirnova , C Liu , A Naji and K. H. Kaestner

The global diabetes epidemic poses a major challenge. Epigenetic events contribute to the etiology of diabetes; however, the lack of epigenomic analysis has limited the elucidation of the mechanistic basis for this link. To determine the epigenetic architecture of human pancreatic islets we mapped the genome-wide locations of four histone marks: three associated with gene activation—H3K4me1, H3K4me2, and H3K4me3—and one associated with gene repression, H3K27me3. Interestingly, the promoters of the highly transcribed insulin and glucagon genes are occupied only sparsely by H3K4me2 and H3K4me3. Globally, we identified important relationships between promoter structure, histone modification, and gene expression. We demonstrated co-occurrences of histone modifications including bivalent marks in mature islets. Furthermore, we found a set of promoters that is differentially modified between islets and other cell types. We also use our histone marks to determine which of the known diabetes-associated single-nucleotide polymorphisms are likely to be part of regulatory elements. Our global map of histone marks will serve as an important resource for understanding the epigenetic basis of type 2 diabetes.

  C Liu , G Tian , Y Tu , J Fu , C Lan and N. Wu

Bone morphogenetic protein-2 (BMP-2) is normally expressed in the embryo promoting the development of several organs. Aberrant expression of BMP-2 occurs in various tumors. However, a correlation between BMP-2 expression in human gliomas and patients' prognosis has not been reported. To address this question, this study was to investigate the BMP-2 expression pattern in human gliomas and to evaluate its prognostic relevance.


We analyzed the expression of the BMP-2 antigen in a series of 98 gliomas of various grade and histology by immunohistochemistry on paraffin-embedded sections. Then, the correlation of BMP-2 expression pattern with clinical–pathological features of patients and its prognostic relevance were determined.


Immunohistochemical analysis with anti-BMP-2 antibody revealed dense and spotty staining in the tumor cells and its expression levels became significantly higher as the gliomas' grade advanced (P < 0.001). The median survival of patients with intensively positive BMP-2 expression was significantly shorter than that with negative expression (318 vs. 1197 days, P < 0.0001). The Kaplan–Meier survival curves showed that the BMP-2 expression was not only a significant predictor of survival in high-grade gliomas (grade IV, P = 0.02), but also in lower-grade gliomas (grades II and III, P < 0.001).


These results indicate that BMP-2 is a highly sensitive marker for gliomas prognosis and suggest that the expression level of BMP-2 may be a potent tool for the clinical prognosis of gliomas patients.

  S Ma , F. E Olucha Bordonau , M. A Hossain , F Lin , C Kuei , C Liu , J. D Wade , S. W Sutton , A Nunez and A. L. Gundlach

Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the neuropeptide relaxin-3 (RLN3). Therefore, this study examined the possible contribution of RLN3 to MS activity, and associated hippocampal theta activity and spatial memory. In anesthetized and conscious rats, we identified the ability of intraseptal RLN3 signaling to modulate neuronal activity in the MS and hippocampus and promote hippocampal theta rhythm. Behavioral studies in a spontaneous alternation task indicated that endogenous RLN3 signaling within MS promoted spatial memory and exploratory activity significantly increased c-Fos immunoreactivity in RLN3-producing NI neurons. Anatomical studies demonstrated axons/terminals from NI/RLN3 neurons make close contact with septal GABAergic (and cholinergic) neurons, including those that project to the hippocampus. In summary, RLN3 neurons of the NI can modulate spatial memory and underlying hippocampal theta activity through axonal projections to pacemaker neurons of the MS. NI/RLN3 neurons are highly responsive to stress and express corticotropin-releasing factor type-1 receptors, suggesting that the effects observed could be an important component of memory processing associated with stress responses.

  D. R Prows , A. V Winterberg , W. J Gibbons , B. B Burzynski , C Liu and T. G. Nick

Morbidity and mortality associated with acute lung injury (ALI) and acute respiratory distress syndrome remain substantial. Although many candidate genes have been tested, a clear understanding of the pathogenesis is lacking, as is our ability to predict individual outcome. Because ALI is a complex disease, single gene approaches cannot easily identify effectors that must be treated concurrently. We employed a strategy to help identify critical genes and gene combinations involved in ALI mortality. Using hyperoxia to induce ALI, a mouse model for genetic analyses of ALI survival time was identified: C57BL/6J (B) mice are sensitive (i.e., die early), whereas 129X1/SvJ (S) mice are significantly more resistant, but with low penetrance. Segregation analysis of reciprocal F2 mice generated from B and S strains revealed significant sex, cross, and parent of origin effects. Quantitative trait locus (QTL) analysis identified five chromosomal regions significantly linked to hyperoxic ALI survival time (named Shali1–Shali5). Further analyses demonstrated that both parental strains contribute resistance alleles to their offspring and that the phenotype demonstrated parent of origin effects. To validate earlier findings, we generated and tested mice from all eight possible B-S-derived backcrosses. Results from segregation and QTL analyses of 935 backcrosses, alone and combined with the previous 840 B-S-derived F2 population, further supported the highly significant QTLs on chromosomes 1 (Shali1) and 4 (Shali2) and confirmed that the sex, cross, and parent of origin all contribute to survival time with hyperoxic ALI.

  C Liu , R. P Gersch , T. J Hawke and M. Hadjiargyrou

Mustn1 (Mustang, musculoskeletal temporally activated novel gene) was originally identified in fracture callus tissue, but its greatest expression is detected in skeletal muscle. Thus, we conducted experiments to investigate the expression and function of Mustn1 during myogenesis. Temporally, quantitative real-time PCR analysis of muscle samples from embryonic day 17 to 12 mo of age reveals that Mustn1 mRNA expression is greatest at 3 mo of age and beyond, consistent with the expression pattern of Myod. In situ hybridization shows abundant Mustn1 expression in somites and developing skeletal muscles, while in adult muscle, Mustn1 is localized to some peripherally located nuclei. Using RNA interference (RNAi), we investigated the function of Mustn1 in C2C12 myoblasts. Though silencing Mustn1 mRNA had no effect on myoblast proliferation, it did significantly impair myoblast differentiation, preventing myofusion. Specifically, when placed in low-serum medium for up to 6 days, Mustn1-silenced myoblasts elongated poorly and were mononucleated. In contrast, control RNAi-treated and parental myoblasts presented as large, multinucleated myotubes. Further supporting the morphological observations, immunocytochemistry of Mustn1-silenced cells demonstrated significant reductions in myogenin (Myog) and myosin heavy chain (Myhc) expression at 4 and 6 days of differentiation as compared with control and parental cells. The decreases in Myog and Myhc protein expression in Mustn1-silenced cells were associated with robust (~3-fold or greater) decreases in the expression of Myod and desmin (Des), as well as the myofusion markers calpain 1 (Capn1), caveolin 3 (Cav3), and cadherin 15 (M-cadherin; Cadh15). Overall, we demonstrate that Mustn1 is an essential regulator of myogenic differentiation and myofusion, and our findings implicate Myod and Myog as its downstream targets.

  O Penack , O. M Smith , A Cunningham Bussel , X Liu , U Rao , N Yim , I. K Na , A. M Holland , A Ghosh , S. X Lu , R. R Jenq , C Liu , G. F Murphy , K Brandl and M. R.M. van den Brink

Nucleotide-binding oligomerization domain 2 (NOD2) polymorphisms are independent risk factors for Crohn's disease and graft-versus-host disease (GVHD). In Crohn's disease, the proinflammatory state resulting from NOD2 mutations have been associated with a loss of antibacterial function of enterocytes such as paneth cells. NOD2 has not been studied in experimental allogeneic bone marrow transplantation (allo-BMT). Using chimeric recipients with NOD2–/– hematopoietic cells, we demonstrate that NOD2 deficiency in host hematopoietic cells exacerbates GVHD. We found that proliferation and activation of donor T cells was enhanced in NOD-deficient allo-BMT recipients, suggesting that NOD2 plays a role in the regulation of host antigen-presenting cells (APCs). Next, we used bone marrow chimeras in an experimental colitis model and observed again that NOD2 deficiency in the hematopoietic cells results in increased intestinal inflammation. We conclude that NOD2 regulates the development of GVHD through its inhibitory effect on host APC function.

Copyright   |   Desclaimer   |    Privacy Policy   |   Browsers   |   Accessibility